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Abstract— Recent work in the robotics community has lead
to the emergence of cloud-based solutions and remote clients.
Such work allows robots to effectively distribute complex
computations across multiple machines, and allows remote
clients, both human and automata, to control robots across the
globe. With the increasing use and importance of such ideas, it
is crucial not to overlook the critical issue of security in these
systems. In this work, we discuss the use of web tokens for
achieving secure authentication for remote, non-native clients
in the widely-used Robot Operating System (ROS) middleware.
Written in a system-independent manner, we demonstrate its
use with an application for securing clients within the popular
rosbridge protocol.

I. INTRODUCTION

One of the most popular middleware suites built for
robotics research and development is the Robot Operating
System (ROS) [1]. ROS’s robot-independent mentality al-
lows researchers from across the interdisciplinary field of
robotics to quickly make use of existing methods and plug
in their own code for others to use.

At its core, ROS is a publish-subscribe (pub-sub) and
message passing system which utilizes XML-RPC. This
allows native clients from multiple platforms and languages
to send and receive data in a peer-to-peer manner. Native
clients have been written in C/C++, LISP, Python, Java, Lua,
and C# (via Mono)1.

While many times native client libraries are the best and
most robust solution, they are often more heavy-weight.
Emerging research in cloud robotics, web robotics, and the
use of embedded devices are examples where using a more
lightweight, protocol-based solution might be preferred. This
allows for both smaller, optimized programs that are not
required to implement the full ROS system, as is the case
for an embedded devices, or efficient and diverse remote
client libraries for cloud and web-based solutions (e.g., in
JavaScript).

This emergence of non-native ROS clients requires some
server-side node to be running within the ROS system itself.
This node serves as an entry point into the system and
allows clients to connect with a variety of network protocols
such as HTTP, WebSockets, or plain TCP, to name a few.
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One such node is rosbridge [2]. rosbridge itself is simply
a protocol specification for communication between a native
ROS system and a remote client (either native, or non-native).

The work done with the development of ROS and remote
clients has allowed for a vast array of work to be done
within robotics; however, this growing popularity highlights
a crucial problem with many systems to-date: the lack of
proper security procedures. Many existing remote systems
have utilized security through obscurity techniques while
running live system on the Internet. However, obscurity
is rarely an effective defense for valuable targets and the
computer security community regards obscurity techniques
as inferior to mechanisms with proven security properties,
such as cryptographic primitives.

Virtual private networks (VPNs) are often used to create
secure connections between the ROS system and remote
clients (both native and non-native). While effective in many
cases, the need to support anonymous and non-expert remote
users in using of ROS systems makes VPNs less appealing
due to their complex configuration and need for separate
user-side software. Therefore, a bridge must be made be-
tween the robotics and security communities to address this
growing problem.

In this work, we propose and develop a system-
independent authentication method for remote ROS clients.
The method is aimed at being used in a wide array of
non-native clients and does not rely on any particular user
management system. This critical point allows it to be
used in the largest amount of systems and does not force
researchers to adhere to, or use, particular authentication
systems. Instead, we develop a schema called rosauth which
utilizes web authentication tokensto verify remote clients
via an arbitrary external user management system. We then
integrate the schema as part of the rosbridge protocol and
detail an example client use case using a web-browser based
client.

II. RELATED WORK

The motivation for this work spans both the robotics and
security communities. To begin, we look at additional uses
of Message Authentication Codes (MACs) to solve similar
security problems. Next, we look at existing work done
relating directly to ROS and security. We then take a look at
example work done with remote, non-native clients for use
with ROS systems to emphasize the importance of security.



A. MACs

The principle behind MACs is quite simple to understand.
In order to ensure a message has come from a trusted
source, it is hashed with a known, shared secret key using
some known hashing algorithm. For example, assume client
C is attempting to send a verified message m to server
S. C and S both know some secret key k and agree to
use a hashing function called hash() and the concatenation
operation “+”. C will send a message with the following
fields of information:
{
mac: hash(k +m)
message: m
}

When S receives the message, it will first compute hash(k+
m) and compare it to the received MAC. If they match,
then the message received is valid. Otherwise, the message
was sent by an untrusted source, was maliciously altered in
transit, or was altered due to bit errors in communication.
However, these guarantees only hold if a sound hashing
algorithm and an appropriate length key is used [3], [4].

MACs have become essential parts of many well known
and trusted security measures, including the popular IPSec
(Internet Protocol Security) and SSL (Secure Sockets Layer)
protocols.

While MACs typically provide message-level security,
they can also be used as evidence of user authenticity. In
the Kerberos protocol [5], MACs are used to create “tickets”
that provide evidence that a client has authenticated using
a given user or service’s credentials. This approach allows
an external authenticator to validate credentials and provide
tickets that other remote nodes can use to ensure a user
is authentic. Kerberos plays an important role in traditional
computer network security, serving as part of the foundation
for domain controller software, such as Microsoft’s Active
Directory system.

B. ROS and Security

Recent work has shed light on the many known vulnera-
bilities of an out-of-the-box ROS system [6]. In this work, a
small robotic toy car running ROS was set up at DEF CON
20, an annual “hacking convention”2. The car was set up as
a “honeypot” to find out what weaknesses the system had.

In particular, this work points out the use of unsecured
TCP ports for ROS-to-ROS (e.g., node-to-node) communi-
cation in plain text. This allows for multiple problems such
as intercepting and interpreting the plain-text messages, and
the ease of spoofing messages into the system.

Additional vulnerabilities include the standard use of
unencrypted data storage. While this is a valid point, this
second area is not the focus of this work.

C. Non-Native Remote Clients

The emergence of non-native remote clients has opened
up a wide array of research topics. One prominent use case

2http://www.defcon.org

of such clients includes utilizing this technology to enable
web robotics. While porting robots to web-based interfaces
has been seen in robotics for several years [7], [8], what
is unique in recent trends is bridging web technologies and
the power of ROS-enabled robots to bring robots to a more
diverse group of non-expert users and researchers.

1) Web Robotics: As mentioned earlier, an important
part of enabling this technology is a server-side node to
serve as the entry point into ROS. A popular choice for
this is the rosbridge protocol and implementation [2]. The
protocol itself defines a JSON (JavaScript Object Notation)
specification to gain access to the pub-sub services ROS
provides. The key to rosbridge is the fact that clients now
only have to implement a lightweight protocol as apposed to
becoming a full ROS client.

One such client implementation is the ROS JavaScript
library suite [9]. This library, developed as part of the Robot
Web Tools effort [10], allows web browsers to communicate
with and visualize data to and from ROS. These libraries
communicate to rosbridge via WebSockets, which is built
on top of HTTP. This allows remote users, both expert and
non-expert, to gain access to robots remotely using a robust,
cross-platform solution.

In [11], an entire remote lab was developed for a PR2
robot. This robot, running ROS and rosbridge, was accessible
across the web and could be fully controlled using a modern
web-browser. Not only was this a huge step forward for
enabling researchers to gain access to robots they themselves
may not have access to in their own labs, but it also allowed
for work to be done quickly across the web using remote
users [12], [13].

2) Cloud Robotics: While web-browser-based approaches
have become a popular use of non-native ROS clients,
examples exist in other areas as well. Cloud robotics is
another emerging field that has made use of such non-native
ROS clients. One such project, known as Rapyuta3, has
developed a platform as a service (PaaS) framework for
robots using remote, elastic, cloud-based ROS compatible
computing environments. A JSON based specification similar
to rosbridge was developed to connect the remote, cloud
processes to the core ROS system.

While the use of non-native clients has opened up the
research field to a vast array of new possibilities, the notion
of security has been dramatically overlooked. By creating
entry points into the ROS system, such as rosbridge, we
exacerbate the problems outlined in [6]. In order to allow
remote users to connect, we now create open, unsecured TCP
ports with a clearly defined, lightweight protocol to control
an entire robotic system. With the gaining momentum of
these technologies, it is critical to begin to solve the issues
associated with doing so.

III. GOALS

We have several goals in creating our secure environment:

3http://www.rapyuta.org



1) The main ROS core, associated native ROS clients
(including the robot itself), and non-native clients
must be able to communicate with guaranteed message
authentication, integrity, and confidentiality.

2) Any remote host must be able to request service from
the system.

3) An arbitrary external authentication system is used to
provide credentials for internal ROS devices.

4) The system must provide proper authenticity and
connection identity, even when multiple clients are
multiplexed to the same source IP address (such as
when a network address translation (NAT) device is
used).

5) Connections that do not successfully authenticate will
be terminated.

By meeting these goals, a system can ensure ROS devices
can communicate privately, without concern for tampering
or alterations from malicious outsiders.

IV. METHODOLOGY

Our security goals implicitly separate the requirements for
individual packets from session security. An existing security
protocol, such as IPSec or SSL, can be used to create secure
tunnels for communication. VPN software is often used for
this purpose to allow ROS-enabled components to commu-
nicate with each other. However, VPNs often require each
party to install specialized software and carefully configure
settings. While useful in closed networks, these limitations
may hinder participation of external users on non-native
clients.

Rather than using VPNs, we will use the SSL protocol to
ensure confidentiality, integrity, and authenticity of individual
packets. By using certificates issued by trusted certificate au-
thorities, SSL can ensure that external clients know each ROS
system, including the external authenticator, is legitimate.
SSL also uses MAC and encryption algorithms to provide
message integrity, authenticity, and confidentiality. In Figure
1, we depict a network that supports both VPN and SSL
connectivity for remote users. We use a firewall to block all
traffic that does not use either the VPN or authorized SSL
connections.

A. Authenticating Remote Users

While SSL provides a secure channel for communication,
it does not provide any assurances that a connected client
is an authorized user. Instead, a system, which we call the
External Authenticator (the top-right machine in Figure 1),
must be responsible for user authentication. This server,
based off the Kerberos protocol, must maintain a list of users,
their associated access levels, and the private credentials,
such as a password, associated with each user account. To
establish a connection, a client must approach the External
Authenticator with the appropriate credentials that the Ex-
ternal Authenticator can use to verify the legitimacy of the
client’s identity claim (e.g., a username and password). If
the claim is valid, the External Authenticator will provide
client with a token, which serves as identifying evidence to

other systems, that the client can use to gain access to other
systems. This approach allows a single server to take on the
burden of user authentication while allowing other systems
to seamlessly use this identity.

The External Authenticator must carefully construct the
security token to prevent attackers from creating counterfeit
tokens or altering existing tokens. The token in the authen-
ticator must include:

• client (string): The client string contains the IP of
the client where this message originated.

• dest (string): The destination string contains the IP or
host of the server the client is trying to connect to.

• rand (string): A random string is added to the hash as
a nonce to prevent replay attacks and cookie stealing,
and allow for multiplexing (explained further in this
section).

• t (int): A count of seconds since the start of the Unix
epoch is given, indicating the time the original MAC
was created.

• level (string): A user level string is provided to state
what level of user is connected (e.g., admin).

• end (int): An end time in seconds is given stating how
long the client is authorized to remain connected.

The rand value plays several important roles. First, the
random value serves as a nonce, indicating that the same
random value should not be used multiple times in a given
time period. This ensures an attacker cannot simply replay
a prior request to be authenticated or steal another client’s
credentials. This value also enables servers to demultiplex
multiple clients that happen to share an IP address (such
as those behind a NAT device). Finally, this value must be
kept secret to ensure other clients cannot present the token.
However, since the entire communication is protected by an
SSL tunnel, an adversary would be unable to obtain this
value through eavesdropping attacks.

The External Authenticator will use a delimiter and con-
catenate these fields, in the indicated order into a string,
token fields. The authenticator will then produce a hash
MAC using a secure MAC function, such as one of the
SHA-2 algorithms [14]. The hash MAC will be constructed
using MAC = hash(key + token fields). The Ex-
ternal Authenticator will then use a delimiter and concatenate
both the token fields and MAC fields into a single string,
token. This token is then provided to the client, allowing
it to attest to its identity with supporting evidence.

When the client contacts a server with a token, the server
will perform several checks on the token and the client,
as outlined in Figure 2. This check is made during the
connection establishment phase and the connection is aborted
if any of the checks fail.

By using SSL, we need only perform user authentication
once per connection. SSL’s protection of the connection
makes it impractical for an attacker to inject commands into a
protected connection or to assume control of another party’s
session. This allows the server to authenticate a connection
with only a single packet from the client.



Fig. 1. A high-level outline of the developed method. To the left, the ROS system (including its associated robot) is protected by a firewall
and only accessible through a VPN or a single port listening for SSL traffic. Remote clients (bottom) can request the authentication token and
associated fields from the external authenticator (top-right) in order to attempt an authenticated connection.

1: procedure CHECKAUTHENTICATION(mac, data)
2: if sha512(key + data) is not mac then
3: return False
4: else if data[′client′] is not socket’s client IP then
5: return False
6: else if data[′host′] is not server’s IP then
7: return False
8: else if data[′t′] is not current time ±δ then
9: return False

10: else if data[′end′] ≤ current time then
11: return False
12: else
13: return True
14: end if
15: end procedure

Fig. 2. The authentication check procedure used to verify connection
requests from non-native ROS clients. δ represents a small amount of
time to account for loosely synchronized system clocks.

V. APPLICATION

We now present an example use case and application
of the above methods. In this application, we consider the
case of web-browser-based clients connecting to a ROS-
enabled robot. The techniques used in this application are
robot independent and have been tested to remotely con-
trol multiple robots, including the Willow Garage PR2 and
KUKA youBot. For this application, our clients are using
a web-browser based interface designed with roslibjs4 and
connect to a rosbridge server using Secure WebSockets
(WSS), which is built on top of HTTPS. Furthermore, the
external authenticator is the Robot Management System
(RMS)5 which contains its own user management [13].

4http://www.ros.org/wiki/roslibjs
5http://www.ros.org/wiki/rms

Fig. 3. A high-level pipeline showing the flow in which a remote client
can securely connect to the robot.

Internal authentication is done via the rosauth package6 we
created.

A. Authentication Pipeline

We begin by looking at a high-level pipeline of the
application flow. This serves to give a general idea of how
the system functions before we take a closer look at some
of the pieces. This pipeline is depicted in Figure 3.

We start at the top left of the diagram (note that time
progresses downwards). To begin, the robot is brought up and
a rosbridge server is started on the robot. This server runs on
port 9090 and uses a Secure WebSocket with a signed SSL
certificate. At this point, the robot is fully up and running,
and rosbridge is listening for any connection.

Next, a user from an external Internet location opens up
a web browser and connects to a running instance of the
RMS. In our case, the RobotsFor.Me7 site was used [13].
The connection to this site is made via HTTPS (again, using

6http://www.github.com/WPI-RAIL/rosauth
7http://www.robotsfor.me



a signed SSL certificate). The user logs into this site using
their login credentials which are verified by the RMS (i.e.,
external authenticator) itself. Once logged in, the client is
redirected via a HTTP REDIRECT (status code 302) to the
main menu page. This page provides the user with a list of
available robots and interfaces.

Upon receiving the menu, the user can click on the
available robot and a request is sent to the RMS for an
interface to control this robot. An example interface is shown
in Figure 4 to control the Willow Garage PR2 robot.

Fig. 4. An example web-interface that uses a non-native ROS client
library to control a ROS enabled robot.

Now, the RMS is responsible for supplying the client with
the appropriate connection information and MAC string. A
deeper discussion of this is explored in Section V-B. Once
this information is generated, it is sent back to the user as
an HTML and JavaScript page via HTTPS.

At this point, the client now has an HTML page that is
filled in with the appropriate connection information. The
browser will execute the generated JavaScript and open a
Secure WebSocket connection to the ROS system. Here, it
passes along the supplied authentication information and the
ROS system decides if the information is valid (discussed in
Section V-C). Once verified, the connection is kept open and
data can stream between the client and the robot.

B. Client-Side Credential Acquisition

During this process, the RMS is responsible for supplying
a correct MAC and associated information so that the ROS
system will authenticate the connection request. To do so, it
first looks internally at its own secured database to acquire
the secret key. This key, a string of 16 characters, is randomly
generated upon installation of the RMS and has also been
installed on the ROS server. Next, it gathers the rest of the
information by checking information such as the client’s IP
address (which cannot be spoofed due to the TCP hand-
shaking process) and generates a random string. In order to
determine the end time, the RMS looks internally at its user
database. In this instance, admins were authorized to connect
to the robot at any time, and general users were restricted
to a specific time frame. This information was determined
server-side and sent back to the client and included in the
MAC.

All the appropriate information is hashed together using
SHA-512 and is filled in as JavaScript that will be sent back

to the client. This JavaScript serves as the client’s security
token.

C. Server Side Authentication

In order to incorporate the methods developed in this
work into the ROS system, the rosbridge protocol itself was
modified. An additional op code, auth, was added to the
protocol with the following JSON definition:
{
"op": "auth",
"mac": <string>,
"client": <string>,
"dest": <string>,
"rand": <string>,
"t": <int>,
"level": <string>,
"end": <int>
}

Now, if authentication is enabled on the rosbridge server, it
will wait for this op code to come in before accepting any
ROS messages.

When the request does come in, a ROS service call is
made to the rosauth node. This generic node takes in the
above information and verifies it according to the procedure
outlined in Figure 2. The genericness of this node allows
these methods to be used in additional server implementa-
tions outside of rosbridge.

Once the request is checked in rosauth, a true or false
response is sent back to rosbridge. Any false response
is treated as an invalid request and results in a severed
connection.

D. Unauthorized Connection Attempts

While the above tests showed the pipeline for a successful
connection, it was also critical to test against unauthorized
requests. Several tests were made to verify this.

In the first test, an unauthorized instance of RMS was set
up to try and connect its own clients to the robot. In this
case, all information in the MAC would be valid; however,
the secret keys would mismatch. As expected, the connection
was immediately dropped.

In additional tests, changes were made to certain parts
of the MAC information that did not match the original
information used to generate the MAC. This too lead to
an appropriately severed connection. In all known previous
work, these unauthorized connection attempts would be
unconditionally accepted allowing full control of the robot
to potentially malicious users.

VI. CONCLUSION

In this work, we have explored and developed a custom
MAC based authentication schema for remote, non-native
ROS clients. As expressed in [6] and demonstrated at DEF
CON 20, the need for security techniques must be brought
into the robotics and ROS communities.

While we note that some of the methods used in this work
could solve broader problems within ROS (discussed further



in Section VII), we focus on the case of having remote, non-
native ROS clients. For native ROS clients, we assume such
devices can communicate directly to each other via some
trusted, secure network.

This work provides new methods for providing security
measures aimed at authenticating remote users from any
IP address using non-native ROS clients. As exemplified in
work such as [9], [11], [2], [12], [13], the ability to utilize
these non-native clients will allow roboticists to utilize a
wider range and more diverse group of users and researchers.
Nevertheless, with the growing momentum behind such easy
to use lightweight protocols and techniques, it becomes ever
more important to ensure these environments are run in a
safe and secure manner.

The developed security token schema ensures that only
clients which have been authenticated from some trusted ex-
ternal authentication source are allowed access to the robot.
The development of such a generic schema also allows for
a wide array of out-of-the-box (such as the RMS) systems,
or custom user management systems to be used to control
access to the robot. Furthermore, the rosbridge protocol
has been further developed and modified to incorporate the
developed methods.

VII. FUTURE WORK

Even with the methods developed in this work, there is still
room for a vast array of work to be done in this growing area.
To begin, we look again at the case of non-native clients.

While this work provides solutions to authentication, an-
other problem with the system itself is authorization. Many
times, we do not want to allow certain remote clients access
to the entire ROS system. This allows users to send direct
commands to the robot which may bypass certain safety
constraints. The schema developed in this work provides the
ability to expand upon this idea.

Within the security token is a level field. This field
is associated with the user level of the current client. This
arbitrary string is determined by the external authenticator
(allowing for a variety of different levels), but the developed
authentication schema ensures the client did not tamper with
this user level. Thus, an authorization node could be put in
place which is configured as a list of ROS topic and service
names and the associated user level. If a client attempts
to publish or subscribe to a data stream that they are not
authorized to access, the request could be ignored.

One additional area of future work involves incorporating
the techniques developed in this work for native ROS clients.
In this work, we assumed core ROS systems and clients could
be wrapped in a VPN; however, as stated earlier, this may not
always be possible or desired. The developed technique thus
could be adapted into the core ROS system to authenticate
any and all native ROS clients. The abstractness of the
rosauth package also makes this a more feasible solution.
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