
14

Resolvers Revealed: Characterizing
DNS Resolvers and their Clients

CRAIG A. SHUE, Worcester Polytechnic Institute

ANDREW J. KALAFUT, Grand Valley State University

1. INTRODUCTION

The Domain Name System (DNS) performs an essential Internet duty: the translation of
host names, which are convenient for humans, into IP addresses, which are used to route
packets. To do so, an application on an end-user’s system must contact a DNS resolver
to perform these translations. While the user’s system may run a DNS resolver locally,
many use an ISP resolver (sometimes called a DNS cache) to perform the resolution on the
client’s behalf. This resolver then must proceed through a series of queries to locate the
DNS server responsible for the relevant DNS records, called the authoritative server, which
it then queries to retrieve the host to IP address mapping.
This DNS process can be leveraged to detect attackers. Botnets regularly make use of the

DNS for command and control and to perform reconnaissance on a destination organiza-
tion [Choi et al. 2007; Oberheide et al. 2007]. These attack applications have characteristics
that deviate from legitimate users. As an example, the recent Feederbot botnet issued cus-
tomized DNS queries and bypassed its local ISP DNS resolvers to issue queries, likely to
evade detection [Dietrich et al. 2011]. This provides opportunities to detect bots by profiling
their queries and associations with DNS resolvers. However, no prior work has systemati-
cally determined the resolvers used by clients or the query patterns used by these resolvers,
preventing such opportunities from being realized.
At the same time, the DNS has received significant attention from researchers. Some prior

work has studied DNS query performance, caching effectiveness, resilience of DNS servers,
and even the contents of DNS servers. Other prior work has sought to leverage DNS in
novel ways. In previous work, we proposed using the authoritative DNS server for access
control, allowing it to provide accurate IP mappings as “keys” to reach protected servers,
while churning server IP address to prevent access without the proper mapping [Shue et al.
2012]. These novel techniques require a detailed understanding of the DNS, both from an
authoritative server and from a resolver standpoint.
While our approach required cooperation from DNS resolvers, these very DNS resolvers

appeared to be an understudied topic. Prior work did not address several key questions for
us. In particular, we wanted to know if we could 1) distinguish a resolver on a (possibly
malicious) end-user system from an ISP-class resolver, 2) associate a client with a particular
resolver to create a narrow (and thus more secure) capability, and 3) build useful historical
information about a particular resolver and the prior behavior of its clients.
In this work, we broadly explore DNS resolvers to answer these questions. In doing so,

we make the following contributions:

(1) An Approach to Distinguish Resolver Classes: Simply by passively examining the
DNS queries to our resolvers, we can distinguish the resolver software and underlying
operating systems in use by many resolver types. With carefully crafted responses, we
can further distinguish the most popular resolver implementations (BIND and Microsoft
DNS server).

(2) Detection of Anomalous Query Patterns: While DNS is highly structured, we
can find interesting behavior in the temporal querying patterns of resolvers, with some
repeat queries being issued before the expiration of the records in a prior response.

ACM Transactions on Internet Technology, Vol. 12, No. 4, Article 14, Publication date: July 2013.

14:2 C. Shue and A. Kalafut

Some ISP resolvers are prolific premature queriers and regularly re-request resolutions
for the same records from our servers before the TTL expires.

(3) Creation of Passive Association Approach for Clients and Resolvers: While
prior work by Mao et al. [Mao et al. 2002] developed active probing techniques to
link a client and resolver, these techniques only work for established Web commu-
nication and cannot be used to screen arbitrary incoming connections. We create a
passive, application-agnostic association approach for clients and routers and articulate
the challenges in such associations. This technique can augment passive DNS measure-
ments [Zdrnja et al. 2007], which are used in a variety of domains, including malware
detection [Grier et al. 2012].

The rest of this paper is structured as follows. In Section 2, we survey related work. In
Section 3, we analyze the DNS resolvers that visit our organization. In Section 4, we provide
approaches to associate clients and resolvers. In Section 5, we discuss implications of our
work for security. Finally, we conclude with discussion in Section 6.

2. RELATED WORK

There have been a large range of studies on the DNS, from studies on DNS caching [Jung
et al. 2002; Cohen and Kaplan 2003] to DNS servers and their behavior [Sisson 2010] to the
security of DNS resolvers [Dagon et al. 2008]. Each of these studies focuses on a different
aspect of the domain name system.
Our own prior work related to DNS [Kalafut et al. 2011] investigated the contents of DNS

zones and found some errors in their configurations. Prior work by Pappas et al. [Pappas
et al. 2009] investigated three specific configuration errors with potential impacts on DNS
availability in greater detail. Each of these concentrates on the configurations present in
DNS zones or at authoritative DNS servers. Although our current study is not specifically
looking for misconfigurations, as these prior two works did, this study does briefly touch on
the configuration of DNS resolvers.
The work most closely related to this one is from Mao et al. [Mao et al. 2002]. In this

work, the authors seek to determine how well a content distribution network (CDN) can
predict the optimal server for a client based on the DNS resolver associated with the client.
To do so, the author use a clever active probing approach: when a client visits the Web
server, the HTML page will include an img tag with a source host name that encodes
the client’s IP address (such as http://client-1.2.3.4.example.com/1.jpg). When the
client’s browser prepares to automatically retrieve the image, it will issue a DNS request
for the host name through its local DNS resolver. The example.com DNS server can then
link the client’s IP address with the resolver querying on its behalf. While powerful, this
approach has two important drawbacks. First, this method works after the client and server
have had considerable interaction; however, if the associations are to be leveraged for traffic
filtering, the decision must be made upon the client’s first packet, not after a connection
has been established. Additionally, this method relies on the behavior of Web browsers. We
would like to associate clients and resolvers in an application-independent manner.

3. UNDERSTANDING DNS RESOLVERS

We begin this section by providing a short background on DNS resolvers and servers. Then
we begin our analysis by examining the queries issued by the DNS resolvers that access
our site. Specifically, we collect a month of DNS interactions with our servers and analyze
each of the flag bits in the DNS query headers. We next explore the responses of DNS
resolver implementations to some specific configurations of records designed to be special
cases. Finally, we examine the frequency at which resolvers query our site, and whether
they appear to properly cache our responses.

ACM Transactions on Internet Technology, Vol. 12, No. 4, Article 14, Publication date: July 2013.

Resolvers Revealed 14:3

3.1. Background

Hosts on the Internet are often configured with an ISP-provided DNS resolver that will
assist in resolving host names to IP addresses. This configuration is often provided to
end hosts by ISP DHCP servers. The consumer-grade variants of operating systems, such
as Microsoft Windows, Apple’s OS X, and Linux desktop distributions, contain resolver
software, but in practice, this resolver software is only used to send recursive queries to the
third-party (ISP-provided) resolver (and often the built-in resolver is only capable of this
function). These recursive queries essentially request that the third-party resolver issue all
the necessary queries across the DNS hierarchy, all the way from the root DNS servers to the
authoritative server for the requested host, and simply provide the result to the requestor.
DNS server software is used both as the ISP provided DNS resolver and as the authoritative
servers. The most popular DNS servers, BIND and Microsoft DNS server, are often used on
different operating systems and may have different support for DNS features.
While each of these resolvers, whether a limited built-in resolver or a full-feature appli-

cation, follow the DNS standards, the standards do not specify every detail of every aspect
of the query packet. The values in some fields may be left to the specific implementation.
Different resolvers therefore may be implemented differently and therefore have slightly dif-
ferent ways for querying for the same host. Similarly, the DNS specifications do not specify
what a server should do for all possible inputs. There are possible queries or responses
that are not meaningful or allowed, but the appropriate response to such messages is not
specified by the standard. Therefore, different implementations may handle these cases dif-
ferently. In this section, we focus broadly on the differences in the behavior of different
implementations.

3.2. Data Collection

To perform this study, we collected data from the network at the Oak Ridge National
Laboratory (ORNL), the largest US Department of Energy laboratory. The ORNL network
is used by around 5,000 staff members for general use, with its own enterprise network
that is typical for an organization of its size. However, ORNL also provides access to its
supercomputers and transfers data from unique science facilities, such as a graphite reactor
and neutron accelerator. The network also hosts various government Web sites, such as
www.fueleconomy.gov, a site that was particularly popular during the 2009 Car Allowance
Rebate System program (also known as “Cash for Clunkers”).
We performed DNS packet captures (which we label our DNS packets data set) at each of

our authoritative DNS servers. This allowed us to see each of the DNS requests we received,
including the full query. We collected this data from August 1 to August 31, 2010.

3.3. DNS Query Diversity

We profile DNS resolvers based on the way they interact with our authoritative DNS servers.
We have only one packet that we can observe from the resolver: the DNS query. Since this
query packet is specified in detail in RFC 1035 [Mockapetris 1987], there is not much
flexibility in forming a query for an IPv4 address of a given host. However, there is still
enough flexibility in these queries that they may provide a hint at the resolver in use. The
fields for EDNS0 and DNSSEC, along with the use of recursion flags, can provide some
insight on resolvers.
DNS resolvers supporting EDNS0 [Vixie 1999] can use optional enhancements for the

protocol. For example, these extensions can allow a resolver and DNS server to agree on
a larger packet sizes than the original 512 byte limit, while still supporting backwards
compatibility. By studying these extensions, organizations can gauge the amount of resolver
support for newer features.

ACM Transactions on Internet Technology, Vol. 12, No. 4, Article 14, Publication date: July 2013.

14:4 C. Shue and A. Kalafut

Table I. Top 10 Variants of A record DNS queries for www.ornl.gov from a set of 2,569,434 queries and
127,499 unique DNS resolvers

Request Unique Recursion Checking Extensions for Acceptable Reply DNSSEC
Count Resolvers Desired Disabled DNS Present Packet Size OK Bit

1,094,430 49,102 X 4096 X
721,421 53,051
565,831 18,581 X X 4096 X
59,204 3,682 X X 4096
25,155 1,965 X 512 X
19,420 2,893 X X 2048
18,552 1,815 X X 2048 X
16,991 1,226 X X 512 X
10,966 62 X X 1460 X
5,470 1,302 X 4096

Resolvers can also signal support for DNS security extensions (DNSSEC), defined in
RFC 4035 [Arends et al. 2005]. This RFC defines two bits in the base DNS header that
were previously reserved. One of these, the checking disabled bit is set by a resolver to
indicate that the resolver takes responsibility for verifying the integrity of resource records
it receives using DNSSEC. The other bit, the authenticated records bit, is only set by DNS
servers and unlikely to be useful in analyzing DNS queries. DNSSEC-aware resolvers must
use EDNS0 and these resolvers must also set the DO (DNSSEC OK) bit in the EDNS0
resource record.
The final field we examine is the recursion desired bit. Resolvers can perform queries

iteratively, in which the resolver itself contacts each intermediary server to perform the
resolution, or request that another server perform such queries recursively on the resolver’s
behalf. The server receiving this recursion desired request need not honor it and, depending
on configuration, may simply deny the recursive request. If a resolver issues a query to an
authoritative DNS server with the recursion desired bit set, it may be a sign of misconfig-
uration since there is no need for recursion at the authoritative server.
With these fields in mind, we analyze the incoming DNS queries from the resolvers that

communicate with our authoritative DNS servers. We selected a single specific popular
query, the A record query for the www.ornl.gov host name. This query appears in our data
set 2,569,434 times with 92 variants of the features discussed above. In Table I, we show the
top 10 variants for this query, with the remaining 82 query types being issued a combined
total of only 31,994 times. From this table, we see that the most common query type we
encounter has full DNSSEC support with the DNS header extensions available. The next
most common query, which is actually issued by more unique resolvers than the first, lacks
support for both the DNS header extensions and DNSSEC. Some resolvers queried for the
www.ornl.gov host name using multiple variants. Of the 127,499 resolvers that queried for
the record, 8,453 issued the query using multiple variants.
One insight from this data is that the resolver software used can yield significant variation

for the same query. The support for DNSSec, for example, shows up even in simple queries to
allow the authoritative server to respond with the additional records for cryptographically
verifying the mappings. Consumer-grade resolvers may also ask for recursive resolutions,
despite communicating with an authoritative server. These characteristics can be used to
distinguish the resolver software.
To link observed query patterns with DNS resolver software, we examined several DNS

resolvers: the default resolvers in Macintosh OS X 10.6.5, OpenSUSE Linux 11.2, Windows
XP Professional and Windows 7 Home Premium, an installation of BIND 9 on an Ubuntu
10.04 machine, and Microsoft DNS Server running on Windows Server 2008. This collection
of machines provides a mix of client and server-grade resolvers.
For each resolver, we used the default settings and configuration and used packet captures

to observe the DNS packet headers in the resolver’s query. Each of the operating system

ACM Transactions on Internet Technology, Vol. 12, No. 4, Article 14, Publication date: July 2013.

Resolvers Revealed 14:5

default resolvers set the recursion desired flag, causing them to not match any of the top 10
variants. The BIND resolver exactly matched the top query variant we observed in Table I.
Similarly, the Microsoft DNS Server by default did not set the recursion desired flag and
matched the second entry in Table I. Each of the other systems required us to specify a
forwarding name server, likely resulting in the name servers setting the recursion desired
flag. The seventeenth most common query type, used by 363 unique resolvers, was the
most popular entry with the recursion desired flag set. As previously noted, those resolvers
may be misconfigured, since the authoritative server for a domain has no need to support
recursion and may, depending on configuration, simply deny requests with the recursion bit
set.
These results show that organizations can passively distinguish many resolvers’ types

simply based on how they construct their DNS queries. While this can be easily disguised
with a protocol normalizer, there currently is little incentive for normalizing.

3.4. Interactive DNS Resolver Profiling

While passive analysis of DNS resolvers can show some differences in queries, we can learn
more about DNS resolvers by issuing non-standard replies to interact with the resolvers.
This more extensive interrogation of the DNS resolvers can lead to unspecified behavior and
reveal implementation details of the resolver, allowing us to discover the version of resolver
software used by a client even if the resolver uses a customized configuration.
To determine how resolvers respond to unspecified behavior, we implement a DNS server

to provide arbitrarily crafted responses. We create a server that mocks authority for
example.com; for each response, regardless of the client’s query, this server returns a NS
record (example.com NS ns1.example.com) in the authority section of the packet and in-
cludes an A record for ns1.example.com in the additional records section of the reply. We
also added a proper response record for any PTR record associated with the name server,
since some resolvers actively query for the PTR record of the name server.
We then tested the same variety of DNS resolvers as was used in Section 3.3 We config-

ured BIND9 and the Windows Server system to forward to our customized authoritative
DNS server, and configured the default DNS server on the other systems to be our cus-
tomized server. To issue DNS requests, we used the nslookup utility and the appropriate
gethostbyname library calls, which uses the operating system’s DNS resolution library, on
each of the systems.
To test the resolvers, we implement the following three non-standard zone configurations:

—Case 1: We create zone records that form a CNAME chain that is 15 CNAME records long,
followed by an A record for the 16th host name. As an example, one of the CNAMEs in this
chain is case1-1.example.com CNAME case1-2.example.com,
with case1-2.example.com yielding another CNAME for case1-3.example.com. We set
the TTLs for each record to be long enough to avoid any timeouts. We return only one
answer record per packet so the resolver would have to issue subsequent queries to see
the entire chain.

—Case 2: We return multiple answer records in the same packet. Both a CNAME and an A
record are returned for the same host name, with the CNAME pointing to a host record
that does not exist in the zone.

—Case 3: We return a single response, a CNAME, but rather than provide a host name
in the response, we incorrectly provided an IP address. Such mistakes were found in a
number of zones in previous work [Kalafut et al. 2011].

The first case allowed us to see major differences in the resolver behavior. Of the resolvers,
only BIND9 and the Microsoft DNS server would follow CNAME queries to assemble answers
across packets. BIND9 did successfully traverse the CNAME chain and obtained the terminat-
ing A record, providing the full response to the nslookup utility. The Microsoft DNS server

ACM Transactions on Internet Technology, Vol. 12, No. 4, Article 14, Publication date: July 2013.

14:6 C. Shue and A. Kalafut

gave up following the CNAME chain after 9 queries. The remaining resolvers refused to follow
the CNAME chain at all and instead issued only the CNAME response to nslookup while the
gethostbyname libraries did not report any host names.
The second case also allowed us to observe differences in resolvers. The Microsoft DNS

server, Windows XP, and Windows 7 resolvers returned the IP address in the A record we
provided. However, they improperly handled the CNAME response: rather than returning the
correct host name indicated in the CNAME, the “alias” line returned the originally queried
host name, preventing the user from seeing the correct alias portion of the CNAME. However,
this strange alias behavior was not present in the gethostbyname output and may be an
artifact of the nslookup utility. The Mac OS X and Linux machines correctly provided
both the CNAME and A record replies to nslookup. Interestingly, BIND9 did not provide
both responses. Instead, BIND9 would return the A record response if it was supplied first
in our reply packet. However, if the CNAME was supplied first in the packet, BIND9 would
issue the follow-up query for the aliased host name, discarding the A record response from
the first packet. Further, if the CNAME query failed, such as when our resolver indicated
the record did not exist, BIND9 reported the failure to nslookup rather than provide the
original A record response.
Each of the resolvers handled the final case correctly: they provided the CNAME response

as an alias rather than interpreting it as an A record response. However, BIND9 appeared to
recognize the error: while BIND9 would normally issue follow-up queries for a CNAME record,
it simply aborted in this case rather than try to issue the follow-up queries. The Microsoft
DNS server did not detect this and did issue the follow-up A record queries for the CNAME
alias.
We tested BIND9 and Microsoft DNS server with additional cases. We found that the

BIND9 resolver is fairly robust in its resolution efforts. It would not follow CNAME chains
that were 17 elements or longer. As we previously noted, the Microsoft DNS server aborted
after 9 elements in the chain. We also experimented with CNAME chains in which we forced
records to expire during the resolution process by setting short TTLs and inserting delay in
our server. The BIND9 resolver noticed the expiration and attempted to renew the records.
We then altered our records so that attempts to renew records would cause BIND9 to
follow both the original and the new CNAME chains, reporting the result of whichever
chain terminated (or reached 17 records) first. The Microsoft DNS server did not attempt
to renew any records, but it did appear to detect the expirations: it did not traverse as
far into the CNAME chain as it did in Case 1, aborting after 6 steps. Both BIND9 and
the Microsoft DNS server detected CNAME loops when we experimented with them. These
additional features make detecting BIND9 and the Microsoft DNS resolvers particularly
easy and unlikely that other resolvers would behave identically.
These results show that we can distinguish server-class DNS resolvers, such BIND9 and

Microsoft DNS server, from client-class resolvers, such as those in Linux, Mac OS X, and
Windows machines. Further, we were able to distinguish the server resolvers within the
classes: BIND9 and Microsoft DNS server would abort after traversing different length
CNAME chains. While we could distinguish the client resolvers from the servers, we were not
able to distinguish amongst the client resolvers.
We note that the cases we create would cause some resolvers to fail to resolve the intended

destination. Organizations may be unwilling to use these tests for their primary server
records, such as that for their public-facing Web server. However, these organizations can
use these approaches for non-primary records. For example, the primary Web server at these
organizations could embed a single pixel HTML IMG tag that would cause the client to
attempt to resolve a test host name that would determine the resolver used by the client.
In other applications, such as mail, a temporary outage may be acceptable, assuming mail
servers correctly re-attempt a failed mail delivery. While our test approaches might cause
some resolvers to fail to resolve the record, the TTL on these records can be short. When

ACM Transactions on Internet Technology, Vol. 12, No. 4, Article 14, Publication date: July 2013.

Resolvers Revealed 14:7

the mail server attempts to resolve the mail server’s host name again, the DNS server can
instead provide the correct response rather than the test.
These results show that non-standard responses can be used to learn more about the

DNS resolvers used by organizations.

3.5. Resolver Patterns and Premature Querying

Some DNS resolvers contact our authoritative servers regularly while others visit rarely. We
examined the inter-arrival time of our queries and the frequency at which a resolver visits.
When we looked at just MX or A records DNS queries for our mail and Web servers, we found
236, 532 unique DNS resolvers visit our site. We found that 113, 238 resolvers queried our
DNS servers just once for the entire month. Another 35, 046 resolvers queried us twice, with
17, 972 querying us three times. At the other end of the spectrum, 8, 135 resolvers queried
us 100 times or more, 524 queried us 1, 000 times or more, and 3 resolvers queried us at
least 10, 000 times.
We next divided the queries we received from resolvers into unique 60 minute time win-

dows and looked at how many windows the resolvers visited us during. There were 134, 689
resolvers that visited us during only one hour window, which naturally includes all resolvers
that queried us just once. Another 27, 598 queried us during just two unique windows while
13, 433 queried us during just three unique windows. At the opposite end, 6, 642 resolvers
queried us during 100 or more hour blocks while 105 queried us during at least 700 of the
744 hours in August. The TTL for the mail servers were about 3 hours while the TTL for
the Web server was 5 minutes.
We also noticed a pattern where resolvers re-issued queries before the prior records ex-

pired. When an authoritative DNS server sets a time-to-live (TTL) in a reply to a resolver,
the resolver caches it to avoid having to issue the query again. However, resolvers may not
wait the full TTL before issuing a DNS request again. Some resolvers may choose to lower
the TTL for records if they exceed a certain limit. This may protect a caching resolver from
having to store many long-lived records that are rarely used. Other resolvers may simply
be misconfigured or resource deprived, causing records to be purged prematurely. Other
resolvers may be using proactive caching [Cohen and Kaplan 2003] to prevent popular DNS
records from leaving the cache by retrieving a new version of the records before the entry
expires.
To scope our examination, we focused on requests for our mail and Web servers. We

found 26, 352 resolvers that re-queried our site for an A or a MX record that had not already
expired. Upon examining the requests, it appeared some queries were likely issued because
the resolver had not received the initial response from our authoritative DNS servers. Since
most DNS queries are issued through UDP, there are no reliability guarantees; resolvers must
simply issue another request if a packet is dropped. To minimize this effect, we exclude any
duplicate queries issued within five seconds of the original query. This reduced the count to
17, 144 unique resolvers that prematurely queried our site.
During our examination period, our organization used a five minute (300 second) TTL

for queries about our Web servers and a three hour (10800 second) TTL value for queries
about our mail servers. Given the different time intervals, we examined the queries to these
servers separately. There were 376, 575 premature queries about our mail servers while there
were 101, 382 premature queries about our Web servers. In both cases, we calculated the
difference between the original query and the repeated query, again excluding any results
with a difference of less than five seconds to avoid examining retransmissions due to network
packet loss. In Figure 1, we grouped queries into 10 second-wide bins. Based on this figure,
we can see that about 35% of premature queries are issued within ten seconds of the original
query. This is probably the result of DNS response packet loss. Most bins range between
1.7% and 2% of the premature requests. However, within 30 seconds of the record expiring,
we see a relative increase in the percentage of premature queries, which may indicate the

ACM Transactions on Internet Technology, Vol. 12, No. 4, Article 14, Publication date: July 2013.

14:8 C. Shue and A. Kalafut

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 50 100 150 200 250 300

P
er

ce
nt

ag
e

of
 E

nt
rie

s

Time Elapsed Since Previous Web Query (s)

Fig. 1. Time interval histogram for premature Web server queries

use of proactive caching. Other resolvers could be using fast clocks and expiring records a
few seconds early. However, in this analysis, we do not see any evidence of DNS resolvers
shortening our TTL to a local limit value.
When we examined the mail server DNS patterns, we noticed some irregular caching

behavior. In Figure 2, we show the premature queries grouped into 300 second-wide bins.
We again see a relatively high percentage of premature queries, about 10%, are issued in
the first 300 seconds (with 7% in the first 10 seconds), which again is likely due to query
response loss. However, we see some relative increases in premature querying in the middle
of the window. We see relative increases in the number of repeated queries around the
one hour (3600 seconds) and two hour (7200 seconds) marks, which may be the result of
preconfigured limits and query shortening. Interestingly, we did not see a significant relative
increase towards the end of the end of the TTL validity period as we did with the Web
queries. It appears that proactive caching for mail server records is not used as regularly as
Web requests.
We focused on the top five resolvers issuing premature queries. In each case, the host

name associated with these IP addresses indicated that the machine was associated with
the ISP’s DNS infrastructure. The top resolvers included one machine from a Ukrainian
ISP, one from a US residential broadband ISP, two from another US residential broadband
provider, and one from a Chilean ISP. For each of these resolvers, the premature request
length ranged from immediate to almost waiting for the record to expire. Some resolvers,
such as the Ukrainian and Chilean resolvers, focused on mail server records, while the US
ISP with only one prominent resolver focused on queries concerning our Web server. The
final ISP, the US ISP with two prominent resolvers, seemed to query both our Web and
mail servers equally. Interestingly, this last ISP’s resolvers had adjacent IP addresses and
the host names suggested the resolvers were serving the same geographical region of our
organization. This ISP may be querying our site more regularly than others simply because
our organization’s staff may be using this ISP at home and accessing our servers, causing
the DNS lookups.
We manually inspected the resolvers with the most premature queries, looking for signs of

renewals just prior to expiration of records, which might be evidence of pro-active caching,
or requerying only after a specific amount of time, which may be indicative of administrative

ACM Transactions on Internet Technology, Vol. 12, No. 4, Article 14, Publication date: July 2013.

Resolvers Revealed 14:9

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 0 2000 4000 6000 8000 10000

P
er

ce
nt

ag
e

of
 E

nt
rie

s

Time Elapsed Since Previous Mail Query (s)

Fig. 2. Time interval histogram for premature mail server queries

cache storage limits. However, the querying behavior of these resolvers was more uniform,
with repeated queries after only a short time to those that happened just before the record
would expire. As a result, we speculate that these sites may simply be discarding our DNS
records early due to resource constraints or misconfiguration.

4. ASSOCIATING CLIENTS WITH THEIR DNS RESOLVERS

Associating DNS resolvers with their clients provides opportunities ranging from optimizing
content distribution networks to organizational security. For example, an organization may
keep records of prior attacks by clients. If the organization can associate these requests
with the DNS resolver that the client used, it may use history to customize the response
its authoritative DNS server issues. The organization may choose to provide an accurate
response, divert the clients to a honeypot server, or simply withhold a response to resolvers
with pathologically malicious clients. By leveraging this association, an organization can
make decisions based on the source network, without concerns about DHCP, subnetting, or
the scalability of blacklisting in an IPv6 world.
While a powerful approach, the destination organization must be able to associate clients

with their resolvers. A perfect association may be needed in some cases, but in many others,
including security systems for capabilities or historical policy decisions, security, a list of
most probable associations may suffice.
We now describe the data we studied, the challenges in associating clients and resolvers

passively, and then describe our association strategy.

4.1. Preparing the Data

To augment the DNS Packets data set described in Section 3.2, we collected additional data
from the Oak Ridge National Laboratory network, during the same August 1 to August
31st time frame. Specifically, we captured packet header data from each UDP Packet, ICMP
packet, and TCP SYN packet that traversed our network border. From each packet, we
recorded the source and destination IP addresses, port numbers, packet lengths, and in
the case of TCP, the flags set in the packet header. We additionally used an August 15,
2010 routing table from the Route Views Project [University of Oregon Advanced Network
Technology Center 2010] to perform longest prefix matching on the IP addresses of the

ACM Transactions on Internet Technology, Vol. 12, No. 4, Article 14, Publication date: July 2013.

14:10 C. Shue and A. Kalafut

clients to determine their autonomous system (AS). The AS was with each client connection,
allowing us to perform network-grain analysis. We label this data set the network headers
data set.
The network headers data set gives us a connection history of all interactions from external

systems to our own. However, neither this data set nor the DNS packet captures on their
own provide enough information to associate clients with their DNS resolvers. This can
only be done by combining the two types of data. By merging the two data sets, we can
determine when each resolver contacted our site, what the resolver queried for, and the time
and system that each client contacted.
Although we had used NTP to synchronize both the clocks on the network perimeter

logging system and the DNS packet capture server, the timestamps of the same DNS request
packet being seen at each differ due to an approximately 8 millisecond average latency
between the perimeter and the DNS server. Accordingly, we subtract 8 milliseconds from
the time recorded in the DNS Packets data set. Because the latency varied, even after
this correction, matches between the two sets are not exact. To compensate for this when
combining the two data sets, for each DNS lookup seen in the network headers data set, we
search for the record in the DNS packets data set with the same resolver and destination IP
address which is the closest temporal match within one second. If no appropriate match is
found, we discard the entry. The cases with no match were concerning, so we consulted the
ORNL IT operations team who indicated that many of the unmatched DNS queries were
due to a firewall between the collection points that was blocking access to abusive DNS
resolvers (e.g., those engaged in flooding associated with denial-of-service attacks), causing
them to not appear in the DNS packet captures.
For entries in which a close match is found, we merge information from the DNS request

and response into the network headers data set, retaining the exact timestamp from the
network headers data set. This allows us to have a consistent, high resolution time reference
between packet arrivals. For all DNS responses, we recorded the IP addresses and TTL
values in any A records present in the answer, authority, or additional records portions of
the response. If a reply did not contain any A records, we still retained the record, but
marked it to indicate the absence of A records. This approach allowed us to track exactly
how much time each resolver should have cached any A record, providing an appropriate
time window for use in associating resolvers with their clients. Finally, to prevent local traffic
from affecting our results, we excluded all traffic from IP addresses in our own autonomous
system. In our merged data set, we had 187,117,784 connections from clients, 38,632,137
DNS queries that matched both files, and 2,187,908 DNS queries that could not be matched
in the two data sets. Of the client connections, there were 7, 545, 546 Web connections
from 421, 489 unique Web clients and 2, 951, 458 mail connections from 738, 320 unique
mail servers. In comparison, there were 449, 834 unique DNS servers that contacted our
organization.

4.2. Challenges with Association

Associating DNS resolvers with their clients is challenging for several reasons:

—Possible Lack of Network Proximity: The recursive DNS caches for a client may
not be co-located in the same network as the client. Some networks may rely on the DNS
infrastructure of their Internet service providers. Services such as OpenDNS [OpenDNS
2011] and Google Public DNS [Google 2011] servers allow a client to query name servers
in an entirely unrelated network. From a third-party perspective, it can be difficult to
detect a relationship between the client and these remote DNS servers. Ager et al. first
discovered and investigated this phenomenon [Ager et al. 2010].

—High Traffic Volume: Our organization received connections from millions of clients
in our collection period, frequently with multiple clients connecting to the same server in

ACM Transactions on Internet Technology, Vol. 12, No. 4, Article 14, Publication date: July 2013.

Resolvers Revealed 14:11

the same second. Even with short TTL values, due to DNS caching, a given Web client
can have hundreds of candidate DNS resolvers and vice versa. The enormous number
of possible candidates can make it difficult to determine which clients and resolvers are
actually related.

—Load Balancing: A client could use multiple resolvers for its DNS requests. ISPs often
employ load balancing server infrastructure to accommodate local client demand. Because
of this, there may be multiple DNS resolvers associated with the same client machine at
different times.

We initially attempted a straightforward method of associating clients and resolvers,
which suffered from numerous challenges. In this initial association strategy, we examined
each connecting client and searched for preceding DNS requests to associate the client with
a plausible resolver. While this association approach sense for a security filtering system, it
had several negative aspects from an analysis standpoint:

(1) The client may not have used DNS to connect. This may be caused by direct IP address
connections or application-layer caching of DNS records.

(2) The valid time-to-live may be ambiguous if the server the client is accessing has multiple
DNS records with differing host names and TTLs pointing to it, making it difficult to
determine how far back to search for a match.

(3) The candidate resolver list quickly becomes unmanageable due to resolvers that fre-
quently query our servers. At the time a client accesses a server, there are often hun-
dreds of DNS resolvers who may still be caching a corresponding DNS record with a
valid TTL.

(4) Some resolvers appear to be poorly configured and constantly query our DNS servers.
These become the most frequent resolver associated with each client.

(5) Many clients visit only once, making it impossible to narrow down the resolver list by
correlating the potentially used resolvers across visits.

The challenges of this approach proved too difficult to overcome, leading us to abandon
it in favor of the association strategy discussed below.

4.3. Associating a Resolver’s First Client

Given the limitations encountered in mapping from client accesses to DNS requests, we
instead attempt to map from a DNS request to the clients likely to be using the response.
While this may superficially appear to be a trivial change, it has significant advantages.
First, a resolution request is typically the result of a client requiring information to establish
a connection. Accordingly, a resolution providing an IP address is likely to be followed by a
client leveraging that information to establish a connection. This eliminates the difficulties
with clients caching records at the application layer or connecting directly to an IP address.
Second, the TTL window is clear for these queries: each record has a set TTL associated
with it, so we know how long to consider when searching for clients. This approach addresses
the first two concerns of the previous approach, but it still faces issues with large candidate
lists and challenges in correlating multiple interactions.
We begin by building a potential association list. This list is built by associating the

first client that connects to one of our servers after a DNS query returning that server’s IP
address, with the resolver used to make the DNS request. For example, if a resolver at IP
address a.b.c.d issues an A record query for our Web server and we next observe a client
connection to that server from IP address e.f.g.h, we associate a.b.c.d and e.f.g.h.
This approach also has limitations. Specifically, it is unlikely to be successful for a busy

machine since there may be unrelated clients that just happen to arrive between the resolver
and the client. However, this limitation may be mitigated by making matches on low-volume
machines, during slow periods for typically busy machines, or by leveraging additional

ACM Transactions on Internet Technology, Vol. 12, No. 4, Article 14, Publication date: July 2013.

14:12 C. Shue and A. Kalafut

information. In our data sets, we must examine only periods of low activity. In situations
where additional information is available, other approaches to mitigate this issue may be
possible. For example, busy servers such as Web hosting providers may be able to leverage
virtual hosting information (DNS lookups and HTTP requests for different host names
on the same IP address) since these providers often have thousands of low-volume DNS
domains hosted on the same infrastructure [Shue et al. 2007]. We applied a set of thresholds
designed to reduce the potential for false associations:

(1) The elapsed time between the resolver and first client must be within one second. This
heuristic is based on the thought that a DNS request is usually made because a client
intends to visit immediately.

(2) There must be 30 or fewer clients within one minute of the resolution. This heuristic
addresses the concern of associating unrelated clients and resolvers due to heavy traffic.

(3) During the month-long duration, the association must have occurred at least 10 times.
This heuristic serves to reduce the chance that a potential association is made in error
by only keeping those that occur frequently.

(4) For each client associated with multiple resolvers, we discarded associations that oc-
curred fewer times than 50% of how often the most common association for that client
occurred. This allows for clients that load balance between multiple resolvers, while
discarding associations that are considered likely to be erroneous.

These criteria allow us to exclude spurious associations while allowing us to detect reg-
ular associations and the associations with load-balancing resolvers. After applying the
thresholds, we obtained 13,268 potential associations between clients and resolvers. While
these extremely conservative associations represent only a small percentage of unique clients
(about 0.4%), they allow us to examine trends with lower risk of false associations. Of these
associations, 10,473 (79%) were between clients and resolvers in the same autonomous sys-
tem. In fact, 1,371 pairs were for the same IP address: a machine that regularly acts as a
DNS resolver and a client for itself. At the same time, this association is not guaranteed:
the remaining 21% of potential associations associate clients with resolvers outside their
autonomous system.
The system as described so far does not nearly capture all actual associations between

clients and resolvers. Infrequent clients will not be associated, as well as those that happened
to not be the first using the results from a resolution, and those that only connect during
busy periods. Therefore, we must generalize the potential associations. We aggregated these
potential associations to the AS granularity. From these records, we found 3,233 associations
between a client AS and a resolver AS. We then generalized from these associations by
assuming that any host in the client AS could use any resolutions performed by any resolver
host in the associated resolver AS. We acknowledge this assumption may not always hold:
some resolvers may not share their results with other hosts. However, we used it to make a
first pass at our data set.
We manually inspected the top 10 most popular non-matching potential ASN associa-

tions using the ARIN autonomous system number list [ARIN 2010] and show the entries
in Table II. We can see that the top 3 most popular non-matching potential ASN associa-
tions are among different ASNs for the same organization. However, many of the remaining
associations are unlikely. For example, the fourth and fifth most popular associations are
unlikely. They associate various Google crawlers with Yahoo in the former case, and with
Comcast residential resolvers in the latter case. We investigated these cases further and find
the results happen by chance, indicating that our filtering strategy manages to occasion-
ally make spurious potential associations, even with the thresholds designed to reduce the
chances of this.
The potential associations, aggregated to the AS level, provide an idea of which clients

visiting our organization can potentially use which resolvers. Once these potential asso-

ACM Transactions on Internet Technology, Vol. 12, No. 4, Article 14, Publication date: July 2013.

Resolvers Revealed 14:13

Table II. Top 10 Most Popular Non-Matching ASN Associations

AS Number AS Name
Count Client Resolver Client Resolver
292 7725 20214 Comcast Comcast
118 22394 6167 Cellco Cellco
100 3598 8075 Microsoft Microsoft
75 15169 36647 Google Yahoo
64 15169 7725 Google Comcast
52 3786 4766 APNIC Res. APNIC Res.
45 15169 33491 Google Comcast
36 38631 23576 APNIC Res. APNIC Res.
25 7132 6389 AT&T BellSouth
16 8075 7725 Microsoft Comcast

ciations are generated, we apply them to find the DNS resolution most likely associated
with a given client visit. In this way, the information generated during slow periods can be
leveraged to heuristically make associations during periods where it would otherwise not
be possible. We apply the AS level potential association list to process our data sets and
create actual associations between any resolvers and clients if:

(1) The resolver and client were in a potential AS association.
(2) The client connected to an IP address obtained by the resolver.
(3) The client connected before the TTL would have expired in the resolver’s record.
(4) There was no more recent DNS resolution with an unexpired TTL from another poten-

tially associated resolver for the same address.

Using only the 3,233 AS associations, we were able to associate 113 million (60%) of the
188 million client visits. In terms of distinct clients, 1.6 million (47%) of the 3.4 million
distinct client IP addresses are associated every time they are seen. A further 2% can be
associated some of the times they visit, but not for every visit.
Since the majority of potential associations were made in the same AS, we expanded

the potential association list to include associations of all ASes with themselves, and then
repeated the analysis. We could then associate 120 million (64%) of the results. With this
latter standard, we were able to associate 2 million (60%) unique client IP addresses with
resolvers every time they were seen, and a further 2% some of the time. We attempted a
further heuristic approach, adding potential associations for all directly neighboring ASes,
but this greatly increased the number of potential associations, while only adding associa-
tions for a few hundred thousand previously unassociated client visits. At the autonomous
system granularity, 43% of ASes have only a single associated resolver and 81% of ASes
have 5 resolvers or fewer.
While our manual verification shows that our passive association approach often makes

plausible links between clients and resolvers, such as associations in the same ISP, we do
not have independent validation of the approach. Future work could make simultaneous use
of the active association approach proposed by Mao et al. [Mao et al. 2002] to determine
the passive association accuracy rates for Web users.

5. IMPLICATIONS OF DNS ANALYSIS FOR SECURITY

By combining our analysis on DNS query behaviors and our associations between clients
and their resolvers, we can develop new approaches for detecting and thwarting attackers.
Prior work efforts have tried to distinguish attackers from legitimate users based on their

network characteristics. For example, Ramachandran and Feamster used the timing and
network proximity of hosts to determine if machines were likely to be spam senders [Ra-
machandran and Feamster 2006]. The DNS fingerprinting we have developed provides op-
portunities for organizations to notice whether requests are coming from ISP infrastructure
or from ad-hoc resolvers more likely to be associated with attacks.

ACM Transactions on Internet Technology, Vol. 12, No. 4, Article 14, Publication date: July 2013.

14:14 C. Shue and A. Kalafut

Unfortunately, these fingerprints are not enough. Without a mechanism to link a resolver
and its clients, a defending organization cannot determine the clients associated with po-
tentially malicious DNS queries, nor can it tell if the client used a legitimate DNS server.
Such mechanisms must work across protocols and should allow filtering at the connection
negotiation stage, rather than after the client has gained access to a protected server. Our
association strategy supports these uses, enabling new analysis.
As we previously discussed, the Feederbot example highlights the potential for using our

work for new security goals. The botnet exhibited distinguishable DNS behaviors, matching
our fingerprinting goals, and bypassed ISP DNS infrastructure, which is detectable by our
association approaches. By linking our approaches, defending organizations can detect and
mitigate (e.g., by blocking the attacker or directing the attacker to a honeypot) an attack.
One simple metric, a failure to be associated with a DNS resolver, could be a symp-

tom of malicious activity. To evaluate this metric, we created a corpus of blacklisted IP
addresses by merging multiple Internet blacklist data sources. We used IP addresses listed
in the Spamhaus SBL and XBL blacklists [Spamhaus Project 2010a; 2010b] from August
2010, sender IP addresses from messages rejected by our organization’s spam filters, and IP
addresses of Web crawlers found to be harvesting email addresses from honey pot servers at
our organization. With these data sets, we had a collection of 35,848,009 unique blacklisted
IP addresses. We then compared the IP addresses of clients from both of our data sets. Of
the 2,027,048 unique client IP addresses we were able to always associate with a resolver,
we found that 412,759 (20.4%) appeared in these blacklists. Of the 1,353,864 unique client
IP addresses that we were never able to associate, 239,091 (17.6%) appeared in these black-
lists. For the 66,971 clients that we were able to associate at least once, but also failed to
associate at least once, 16,689 (24.9%) appeared in these blacklists. Our results show that
simply failing to associate with a resolver using our approach does not seem to be a good
indicator for malicious intent.
In the cases where a malicious client is associated with a resolver, remediation may be pos-

sible. A destination organization can begin to aggregate client activity at the DNS resolver
granularity. As we suggested in prior work [Shue et al. 2012], a destination organization may
build a history of detected attacks and their associated resolvers. This empowers a destina-
tion to make policy decisions about resolvers associated with higher risk clients, including
decisions about increased scrutiny, filtering, or even requirements that users authenticate
or solve CAPTCHAs [Von Ahn et al. 2003] to distinguish automated clients.
Resolvers can also become a point-of-contact for destination organizations. In replying to

queries from a DNS resolver, an authoritative server can provide quantitative feedback about
the source organization and indicate problematic clients as additional records. ISP resolvers
that choose to parse these additional records would learn about hosts on their network that
may be compromised and launching attacks, even if these malicious clients choose to bypass
the ISP’s own infrastructure. This feedback could also offer incentives for addressing the be-
havior: the destination may declare that it will begin requiring authentication/CAPTCHA-
solving on the ISP’s users, which may be inconvenient, if the malicious activity continues.
With such interactions, the source and destination organizations may be able to cooperate
to reduce the overall level of attacks on the Internet.

6. CONCLUSION

We have introduced techniques to fingerprint DNS resolvers, revealing information about
the specific server used and, in some cases, the resolver’s underlying operating system.
We find that the DNS resolvers can provide insight into an organization and its clients’
systems. Roughly half of resolvers support DNSSec extensions, showing that regular usage
of this protocol may hinge upon authoritative servers’ DNSSec deployment. We have also
identified patterns in resolvers and reported on some instances where resolvers are querying

ACM Transactions on Internet Technology, Vol. 12, No. 4, Article 14, Publication date: July 2013.

Resolvers Revealed 14:15

our systems more than expected due to misconfiguration or resource limitations. We have
also introduced passive approaches to associate DNS resolvers and their clients.
We believe this work shows the potential for using DNS resolvers as part of security

decisions at a destination organization. Given the relatively smaller number of resolvers
that client systems use, these resolvers may serve as useful aggregators for client history.

REFERENCES

Ager, B., Mühlbauer, W., Smaragdakis, G., and Uhlig, S. 2010. Comparing DNS resolvers in the wild.
In ACM Internet Measurement Conference.

Arends, R., Austein, R., Larson, M., Massey, D., and Rose, S. 2005. Protocol modifications for the
DNS security extensions. IETF RFC 4035.

ARIN. 2010. ASN listing.

Choi, H., Lee, H., Lee, H., and Kim, H. 2007. Botnet detection by monitoring group activities in DNS
traffic. In IEEE International Conference on Computer and Information Technology. IEEE, 715–720.

Cohen, E. and Kaplan, H. 2003. Proactive caching of DNS records: addressing a performance bottleneck.
Computer Networks 41, 6, 707–726.

Dagon, D., Provos, N., Lee, C., and Lee, W. 2008. Corrupted DNS resolution paths: The rise of a
malicious resolution authority. In Network and Distributed System Security Symposium.

Dietrich, C. J., Rossow, C., Freiling, F. C., Bos, H., van Steen, M., and Pohlmann, N. 2011. On
botnets that use dns for command and control. In 7th European Conference on Computer Network
Defense (EC2ND).

Google. 2011. Google Public DNS. http://code.google.com/speed/public-dns/.

Grier, C., Ballard, L., Caballero, J., Chachra, N., Dietrich, C. J., Levchenko, K., Mavrommatis,
P., McCoy, D., Nappa, A., Pitsillidis, A., et al. 2012. Manufacturing compromise: the emergence of
exploit-as-a-service. In ACM Conference on Computer and Communications Security. ACM, 821–832.

Jung, J., Sit, E., Balakrishnan, H., and Morris, R. 2002. DNS performance and the effectiveness of
caching. IEEE/ACM Transactions on Networking 10, 5, 589 – 603.

Kalafut, A., Shue, C., and Gupta, M. 2011. Touring DNS open houses for trends and configurations.
IEEE/ACM Transactions on Networking 19, 6, 1666–1675.

Mao, Z. M., Cranor, C. D., Douglis, F., Rabinovich, M., Spatscheck, O., and Wang, J. 2002. A
precise and efficient evaluation of the proximity between web clients and their local DNS servers. In
USENIX.

Mockapetris, P. 1987. Domain implementation and specification. IETF RFC 1035.

Oberheide, J., Karir, M., and Mao, Z. 2007. Characterizing dark DNS behavior. Detection of Intrusions
and Malware, and Vulnerability Assessment , 140–156.

OpenDNS. 2011. OpenDNS.

Pappas, V., Wessels, D., Massey, D., Lu, S., Terzis, A., and Zhang, L. 2009. Impact of configuration
errors on DNS robustness. IEEE Journal on Selected Areas in Communications 27, 3, 275–290.

Ramachandran, A. and Feamster, N. 2006. Understanding the network-level behavior of spammers. In
ACM SIGCOMM.

Shue, C., Kalafut, A., and Gupta, M. 2007. The Web is smaller than it seems. In ACM Internet Mea-
surement Conference.

Shue, C. A., Kalafut, A. J., Allman, M., and Taylor, C. R. 2012. On building inexpensive network
capabilities. ACM SIGCOMM Computer Communication Review 42, 2, 72–79.

Sisson, G. 2010. DNS survey: October 2010. Tech. rep., The Measurement Factory.

Spamhaus Project. 2010a. Exploits block list (XBL). http://www.spamhaus.org/xbl/index.lasso.

Spamhaus Project. 2010b. Spamhaus block list (SBL). http://www.spamhaus.org/sbl/index.lasso.

University of Oregon Advanced Network Technology Center. 2010. Route Views project. http:
//www.routeviews.org/.

Vixie, P. 1999. Extension mechanisms for DNS (EDNS0). IETF RFC 2671.

Von Ahn, L., Blum, M., Hopper, N., and Langford, J. 2003. Captcha: Using hard ai problems for
security. Advances in Cryptology—EUROCRYPT 2003 , 646–646.

Zdrnja, B., Brownlee, N., and Wessels, D. 2007. Passive monitoring of DNS anomalies. In Detection of
Intrusions and Malware, and Vulnerability Assessment. Springer, 129–139.

ACM Transactions on Internet Technology, Vol. 12, No. 4, Article 14, Publication date: July 2013.

