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Abnormally Malicious Autonomous Systems and
their Internet Connectivity
Craig A. Shue, Andrew J. Kalafut, and Minaxi Gupta

Abstract—While many attacks are distributed across botnets,
investigators and network operators have recently identified
malicious networks through high profile autonomous system (AS)
de-peerings and network shut-downs. In this paper, we explore
whether some ASes indeed are safe havens for malicious activity.
We look for ISPs and ASes that exhibit disproportionately high
malicious behavior using ten popular blacklists, plus local spam
data, and extensive DNS resolutions based on the contents of
the blacklists. We find that some ASes have over 80% of their
routable IP address space blacklisted. Yet others account for large
fractions of blacklisted IP addresses. Several ASes regularly peer
with ASes associated with significant malicious activity. We also
find that malicious ASes as a whole differ from benign ones in
other properties not obviously related to their malicious activities,
such as more frequent connectivity changes with their BGP peers.
Overall, we conclude that examining malicious activity at AS
granularity can unearth networks with lax security or those that
harbor cybercrime.

Index Terms—Autonomous Systems, Security.

I. I NTRODUCTION

The Internet is plagued by malicious activity, from spam
and phishing to malware and denial-of-service (DoS) attacks.
Much of it thrives on armies of compromised hosts, or
botnets, which are scattered throughout the Internet. However,
malicious activity is not necessarily evenly distributed across
the Internet: some networks may employ lax security, resulting
in large populations of compromised machines, while others
may tightly secure their network and not have any malicious
activity. Further, some networks may exist solely to engage
in malicious activity. Several recent ISP enforcement actions,
such as the Atrivo and McColo autonomous system (AS)
de-peerings [1], [2] and the FTC closure of Pricewert net-
works [3], highlight that there are networks that exist simply
to launch attacks. In this paper, we examine whether we can
find malicious networks in a systematic manner using existing
blacklists.

A systematic detection of disproportionately malicious net-
works can be used to build metrics which may be used to
determine if a network is harboring a significant amount of
malicious activity. Such metrics may offer several practical
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benefits. First, ISPs could use them to build identification
of malicious networks into their peering agreements. As an
example, provider ISPs may use the metrics to require their
customers to limit the amount of malicious activity in their
networks to avoid harboring criminals. ISPs could also use the
metrics to determine the effectiveness of their efforts to combat
abuse and compare themselves with other networks. Also,
when receiving traffic, a destination network could prioritize
traffic based on the cleanliness of ASes, which the metrics
can help estimate. This would allow a network under attack
to prioritize traffic that is less likely to be associated with
attackers. Finally, such metrics could also aid spam filtering
programs in their scoring of email messages.

To determine which ASes are malicious, we use ten of the
most commonly-used blacklists for spam, phishing, malware
and botnet activities for a period of a month, in addition to
URLs from spam collected at our department’s email server.
These blacklists either contain host names or IP addresses to be
blacklisted. For host name-based blacklists, we first determine
the IP addresses for each blocked host using real-time DNS
queries. This gives us IP addresses of all blacklisted hosts
in our blacklists. We then use BGP routing tables to group
these IP addresses into their originating ASes. Upon grouping
these addresses by AS, we compare ASes by the percent of
infected machines and the rate at which they are cleaned up.
Using data from the RouteViews Project [4], we examine other
characteristics of the malicious ASes, such as whether their
connectivity to other ASes changes more often than those
without malicious activity. The key findings of our study are:

• A large fraction of routable space is malicious for some
ASes: Four ISPs, 2 from Ukraine, one from Iran, and
one from Belarus, have over 80% of their routable IP
addresses blacklisted. This raises concerns regarding the
purpose of such ISPs.

• Some ASes account for significantly large fractions of
blacklists: Four ASes, three of which are US-based host-
ing providers and one large broadband service provider
in Turkey, account for over 6% of at least one of the
blacklists we tested.

• Some providers regularly peer with malicious ASes: We
find 22 provider ISPs with 100% of their customer ASes
engaged in significant malicious activity.

• Malicious ASes differ from benign ones in other ways:
They are more likely to become completely unreachable
than those which have less malicious activity, and they
are likely to have more peers. However, the duration of
unreachability is short for these ASes, which may have
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implications for orchestrated de-peering attempts.

Overall, these results confirm that examining malicious
activity at the AS granularity can help find networks that
are disproportionately bad, providing a metric for focusing
network clean-up efforts.

The remainder of this paper is organized as follows. In
Section II, we describe our data collection and data sets.
In Section III, we examine the degree to which ASes are
malicious. Section IV examines the characteristics of normal
and malicious ASes, including BGP behavior and AS size.
We describe related work in Section V and discuss the
limitations and alternatives to using blacklists for this analysis
in Section VI. We conclude in Section VII.

II. DATA COLLECTION

To create a comprehensive evaluation of an AS, we use
a diverse set of data sources. Each of our data sources list
machines reported as engaging in some form of malicious
activity. Our data sets have a few limitations. We discuss them
in Section VI.

A. Data Sets

For each set, data was collected from June 1, 2009 to June
30, 2009 unless otherwise indicated. We summarize the data
sources in Table I, and describe them below.

1) Phishing Sites:Phishing sites attempt to collect sensitive
data, such as login credentials, credit card numbers, account
numbers, and social security numbers, from users by imper-
sonating legitimate organizations or brands. The Anti-Phishing
Working Group (APWG) [5] and PhishTank [6] have among
the largest data feeds listing such phishing sites. We use their
feeds, referred to subsequently asAPWG and PhishTank
data sets, respectively. Both of these feeds contain URLs of
phishing sites, along with other meta-data. On an hourly basis,
we extract host names from URLs currently in the feed, and
perform DNS resolutions in each host name to get lists of IP
addresses associated with these feeds. The PhishTank data set
had a two-day outage on June 20 and June 21 causing us to
only have 28 days of data.

2) Spam/Scam Sites:Similar to their phishing site brethren,
scam sites are sites that are advertised in unsolicited messages.
These spam-advertised sites may actually be phishing sites, be
running some other type of scam, or provide actual legitimate
products or services. We use lists of scam sites from two of the
major collectors of such information, Support Intelligence [7]
and SURBL [8].

We receive the feed from Support Intelligence every six
hours. This feed contains URLs from spam as well as associ-
ated IP addresses. We use the IP addresses as ourSI-Feed
data set. Not every URL in this feed has an associated IP
address, and for some that do, when we resolve the associated
host names we get different addresses. Therefore, we use our
own resolutions of these as another data set,SI-DNS.

SURBL also collects domain names from URLs contained
in spam. Although they typically only allow users to perform
lookups on the domain names in their list, we have also
arranged to receive the associated IP addresses from them.

These IP addresses are those associated with the domain itself,
and with the domain withwww prepended. We receive this feed
once per day, and refer to it asSURBL.

Finally, we harvest URLs from spam sent to the Computer
Science Department at Indiana University (IU) and use it to
create theLocal Spam data set. This is a daily feed. We
extract host names from this feed and perform DNS resolutions
to obtain corresponding IP addresses.

3) Spam Senders:Mail server can use IP blacklisting to
prevent compromised machines from sending mail directly.
Spamhaus runs the most widely-used blacklist in this context,
the SBL [9]. We obtain a copy of this blacklist every hour,
and extract IP addresses to create theSpamhaus SBL data
set. Data collection for theSpamhaus SBL data set started
a day later than the others, beginning on June 2, 2009.

4) Exploited Hosts: Spamhaus also maintains a second
blacklist, known as the XBL [10]. This list contains prefixes
(often individual IP addresses) of hosts infected with exploits
often used to send spam. This includes open proxies, com-
puters infected with viruses that are known to send spam,
and other exploits. This data is updated every half hour, and
is labeledSpamhaus XBL. Data collection for this data set
started a day later than the others, beginning on June 2, 2009.

5) Malware Downloads:Malicious software, ormalware,
including viruses, worms, and trojans, have harmful effects on
the computers they infect. Three of our data sets list Web sites
which host malware downloads. The Clean-MX Viruswatch
mailing list [11], eSoft [12], and Malware Patrol [13], all inde-
pendently collect URLs which host malware. The Viruswatch
mailing list periodically sends out emails indicating newly
discovered URLs with viruses. We receive mails from eSoft
with new URLs containing malware, along with a malware
sample, as they are discovered. We download new URLs from
Malware Patrol every hour. In each case, we extract host
names, and perform DNS resolutions to obtain the set of IP
addresses we use. We label these data setsCleanMX, eSoft,
andMalware Patrol, respectively.

6) Bot Command and Control:Botnets consist of groups
of compromised machines used for malicious purposes on
the Internet. Miscreants often use them for sending spam and
for hosting phishing and scam sites. Bots must get their in-
structions from their bot masters, often through command and
control servers. The ShadowServer Foundation [14] provides
lists of botnet command and control servers along with their
IP addresses. We have an hourly access to this data, referred
to asBot C&C subsequently.

B. Data Set Comparisons

Due to differing goals, methodologies, and data sources,
each data set we use can be expected to contain IP addresses
not seen in other data sets. By examining the overlap of IP
addresses from different data sets, we can see how often IP
addresses are used for multiple different malicious purposes.
In Table II, we show the number of data sets containing each
IP address. TheSpamhaus XBL is roughly three orders of
magnitude larger than any other data set, so the vast majority
of IP addresses appear only in that single data set. It is further
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TABLE I
OVERVIEW OF DATA SETS

Duration Unique IP Unique Median IPs Std. Dev.
Label Description (in days) Addresses ASes Per AS IPs per AS
APWG Phishing URLs from the Anti-Phishing Working Group 30 9,560 1,803 2 18.0
Bot C&C Botnet command and control IPs from the ShadowServer Foundation 30 1,986 611 1 11.4
CleanMX Malware serving sites from the CleanMX VirusWatch mailing list 30 2,974 687 1 12.0
eSoft Malware serving sites from eSoft, Inc. 30 8,000 1,196 2 27.2
Local Spam URLs from spam messages received by the IU CS Department 30 5,495 1,024 1 16.5
Malware Patrol MalwarePatrol’s block list for malware-serving sites 30 871 368 1 5.3
PhishTank Phishing URLs from PhishTank 28 7,143 1,580 1 14.2
Spamhaus SBL Verified spam sources from Spamhaus.org Block List 29 6,422 2,005 1 8.9
Spamhaus XBL Hijacked machines from Spamhaus.org Exploit Block List 29 29,585,604 13,580 9 31,568.1
SI-Feed URLs and IP addresses from spam emails from Support Intelligence 30 7,591 1,420 1 20.2
SI-DNS IP addresses from DNS resolutions on theSI-Feed data set 30 4,448 911 1 11.8
SURBL Host names appearing in spam messages from SURBL 30 29,324 2,739 2 47.2

unsurprising that some IP addresses appear in two or three data
sets since some of our data sets track the same information.
We see that some IP addresses appeared in multiple data sets,
with 8 IP addresses appearing in 9 of our data sets and another
7 appearing in 8 sets. This indicates that malicious machines
are occasionally used for many forms of malicious activity;
however, a large majority appear not to be.

TABLE II
DEGREE TO WHICH ANIP ADDRESS APPEARS IN MULTIPLE BLACKLISTS

Number of Blacklists with Number of
Given IP Address IP Addresses

1 29,631,573
2 9,566
3 3,650
4 1,290
5 320
6 112
7 29
8 7
9 8

Now, we look at similarity between any two data sets. We
calculate the Jaccard similarity coefficient between the sets
of IP addresses in each. LetIPSi

be the set of IP addresses
in data setSi. Then the Jaccard similarity of two data sets

is given by J(IPSi
, IPSj

) =
|IPSi

∩IPSj
|

|IPSi
∪IPSj

| . Results for all
data sets except forSpamhaus XBL are shown in Table III.
We ignore the XBL because its size is orders of magnitude
bigger than any other data set, hence the Jaccard coefficients
involving it would be extremely small. As expected, we see the
highest similarity between the two phishing data sets, and the
two derived from Support Intelligence data. Notably, theBot
C&C data set shares at most 4 IP addresses with any other
data set, while most others, even measuring different typesof
bad behavior, have greater similarity to each other. Although
one of the most similar, the two phishing data sets still only
share 24% of their combined IP addresses with each other. The
malware data sets have even less similarity in IP addresses.
This analysis exposes some of the practical limitations of using
blacklists: some malicious behavior is reported and captured
by some blacklists, while other behavior goes unreported. By
using many different blacklist providers, we have a better view
of malicious activity than would otherwise be possible.

Next, we map these IP addresses to their autonomous sys-
tems and repeat a similar calculation for the overlap between

TABLE III
JACCARD SIMILARITY BETWEEN IP ADDRESSES IN EACH DATA SET
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APWG 0 .06 .05 .02 .01 .24 .01 .04 .03 .10
Bot C&C 0 0 0 0 0 0 0 0 0
CleanMX .07 .01 .06 .07 0 .01 .01 .02
eSoft .01 .01 .05 0 .02 .01 .02
Local Spam .01 .02 .01 .06 .09 .05
Malware Patrol .01 0 .01 .01 .01
Phishtank .01 .02 .02 .05
Spamhaus SBL .01 .01 .01
SI-Feed .49 .06
SI-DNS .06

the ASes represented by the IP addresses contained in each
data set. In order to map IP addresses to an AS, we used
a June 15, 2009 BGP routing table from the RouteViews
Project [4]. We chose this date because it is in the middle
of our data collection and is expected to give us the best
estimate of the routing information from that duration. We
loaded each advertised BGP prefix and originating AS from
the RouteViews data into a trie data structure, commonly used
by routers in deciding the next interface to use to forward
packets, and performed longest prefix matches on each IP
address to determine the AS associated with the address.

With this mapped data, we then calculate the Jaccard
similarities of the ASes in the data sets. LetASSi

be the
set of ASes represented in data setSi. The Jaccard similarity
of the two data sets at the AS granularity is then given by

J(ASSi
, ASSj

) =
|ASSi

∩ASSj
|

|ASSi
∪ASSj

| . Results for this calculation
are shown in Table IV. Between all pairs of data sets, there
is much more similarity with regards to ASes than there was
in terms of IP addresses. While the same IP address is not
often used for multiple different malicious activities, multiple
IP addresses in an AS appear to be used this way more often.
Regardless of the type of malicious activity an AS was seen
engaged in, the presence of an AS in multiple blacklists could
be used as a characteristic to help determine if other later
suspicious activities are truly malicious.

III. D EGREE OFAUTONOMOUSSYSTEM MALICIOUSNESS

Using the AS information corresponding to each malicious
IP, we examined the extent of AS maliciousness from two
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TABLE IV
JACCARD SIMILARITY BETWEEN ASES IN EACH DATA SET
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APWG .17 .26 .34 .25 .14 .49 .26 .31 .24 .43
Bot C&C .18 .17 .15 .16 .18 .14 .16 .15 .14
CleanMX .35 .21 .25 .27 .17 .22 .22 .20
eSoft .24 .20 .33 .23 .30 .25 .30
Local Spam .17 .22 .20 .31 .33 .25
Malware Patrol .16 .12 .15 .17 .12
Phishtank .26 .29 .23 .38
Spamhaus SBL .27 .20 .29
SI-Feed .58 .33
SI-DNS .26

perspectives: the percentage of the AS found to be blacklisted
and the percentage of the blacklist each AS constitutes. We
now describe both approaches and their results in detail. We
then examine the temporal behavior of listed machines and the
peering relationships of malicious networks.

A. Examination of ASes by Fraction of Advertised IP Space

Given the number of malicious IP addresses associated
with an AS, the most straight-forward approach to evaluating
the ASes for maliciousness would be to simply order the
ASes by the number of malicious IP addresses. However,
such an analysis would penalize the larger ASes: they simply
have more addresses so they have more hosts that could be
compromised and blacklisted. Accordingly we must consider
the overall size of the AS as a factor when looking for ASes
that are disproportionately bad.

There are no direct sources that help estimate the size
of an AS. Even thewhois database, which contains contact
information about ASes in addition to detailed information
about domain names and IP addresses, does not contain
information about which AS owns which IP prefix. However,
the prefixes advertised by an AS can be used to determine
the maximum number of IP addresses associated with the
AS. While ASes often have unused IP addresses in each
of their prefixes, and it is difficult to determine just how
many addresses are unused, this allows us to obtain a rough
approximation for the AS size, which may be considered an
upper bound. We again extracted the prefix and originating AS
information from the June 15, 2009 BGP RouteViews routing
table. We loaded this information into a trie data structureas
before. For each prefix associated with an originating AS, this
allowed us to determine the number of IP addresses associated
with the prefix. In the process, we were careful to exclude any
sub-prefixes associated with other ASes. Such a sub-prefix
may exist, for example, if an ISP leases part of its address
space to a customer with their own AS. After adding together
the address space from each of the prefixes for each AS, we
had the total number of IP addresses advertised by each AS.

Next, we determine the rough percentage of each AS that
appears in each of our data sets. In Figure 1, we show the
percentage of badness for each AS present in our data sets,
excluding theSpamhaus XBL data set. We separated out
theSpamhaus XBL due to its much larger size which made

the other results difficult to read. This Figure shows several
interesting results. First, a total of 31,263 ASes were advertised
in our BGP routing data and 46.8% of these had at least one
malicious IP in them.While a majority of them have little to
no malicious activity, a small number of ASes have as much
as 0.5-10% of their IP addresses engaged in maliciousness.
In fact, in theSI-Feed data set, one AS had 9.25% of its
addresses in the data set. No other AS had 5% or more of its
addresses in any of these data sets.
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Fig. 1. Percentage of badness for each AS. The AS indices on the x-axis
are independent across data sets with different ASes exhibiting the highest
percentage of maliciousness in each data set.
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Fig. 2. Percentage of badness for each AS in theSpamhaus XBL blacklist
and across all blacklists combined.

In Figure 2, we show the same results for theSpamhaus
XBL data set and the combination of each data set. We note
that the two lines are very similar and almost completely over-
lap because of the size of theSpamhaus XBL data set. We
found 58 ASes with over 100,000 compromised machines in
this data set. Additionally, 255 ASes had between 10,000 and
100,000 machines blacklisted. When looking at the percentage
of each AS’s advertised address space marked as malicious,
we found thatfour ISPs, two from Ukraine, one from Iran,
and one from Belarus, had at least 80% of their advertised
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IP space blacklisted. Another 49 in theSpamhaus XBL data
set had 50-80% of their addresses listed. Further, 556 ASes
had at least 10% but less than 50% of their addresses listed.
These ASes have a disproportionately high degree of reported
malicious behavior, which may be caused by reporting bias,
lax security at the AS, or intentional support of cybercrime. In
any of these cases, these ASes may warrant greater attention.

B. Examination of ASes by Proportion of Data Set

While examining the percentage of an AS that is black-
listed can highlight ASes with disproportionately high con-
centrations of blacklisted hosts, it requires large data sets of
malicious hosts. While theSpamhaus XBL data set shows
this clearly, other data sets are not large enough to distinguish
atypically malicious networks. However, rather than consider
the AS to be malicious based on the percentage of its black-
listed address space, we can instead examine the percentage
of a data set for which an AS accounts. This can be used
to highlight ASes with a large number of blacklisted hosts
that might not otherwise stand-out due to the size of some
blacklists. We note that not all highlighted ASes are equal:
in smaller data sets, an AS may be highlighted because of
chance with small numbers. However, this approach may find
concentrations of malicious activity, even using smaller data
sets.

In Table V, we show for each data set the number of ASes
containing at least 0.25% of the IP addresses in the data
set. However, we wanted to avoid penalizing large ASes that
advertise large address spaces and do not necessarily account
for a disproportionate amount of maliciousness in that data
set. Toward that goal, we perform the following calculations.
Let ASSi

be the set of ASes represented in data setSi, and
IPSi

be the set of IP addresses in the data set. For each AS
aj ∈ ASSi

, let IPaj
be the set of IP addresses in the AS

(without regards to whether the IP addresses themselves are
in the data set). Then the IP addresses we count as malicious
are those which satisfy the following two inequalities.

|IPaj
∩ IPSi

|

|IPSi
|

> .0025

|IPaj
|

∑

ak∈ASSi

|IPak
|
∗ 10 <

|IPaj
∩ IPSi

|

|IPSi
|

The first of these inequalities simply captures ASes con-
taining at least 0.25% of the IP addresses in the data set. The
second ignores ASes where the proportion of the address space
advertised by all ASes belonging to the data set advertised
by the AS in question is greater than a factor of ten less
than its proportion of the IP addresses. For example, if an
AS contained exactly 0.25% of the IP addresses in the data
set, we would list it if it accounted for less then 0.025% of
the address space of all ASes in the data set, but ignore it
otherwise.

We can see that some ASes have a high concentrations of
malicious activity. Focusing on the top few rows of Table V,
we note that several ASes account for more than 6% of
blacklisted IP addresses in various data sets.For example, in

the Bot C&C data set, we see that one AS contains 9.11%
of the IP addresses in the data set, yet its advertised address
space represents only 0.002% of the address space advertised
by all ASes in the data set. The next AS in this list, with
8.66% of the listed IP addresses represents only 0.006% of
the advertised addresses in the listed ASes. These two ASes
are a large broadband ISP from Turkey and a hosting service
provider from the US. Incidentally, the US-based hosting
provider also accounts for 7-8% of all blacklisted IP addresses.
Further, inSpamhaus XBL andSI-Feed data sets, we find
two more US-based hosting providers that account for over 6-
8% of these blacklists.

Overall, our results show that a small number of ASes
have a disproportionately high fraction of reported malicious
hosts. These ASes could warrant more attention, such as the
investigations of Atrivo or McColo [1], [2]. We believe that
legitimate ISPs with disproportionately high malicious activity
need to provide tighter account controls, particularly in the
case of hosting providers, or seek opportunities to provide
anti-virus or firewalling services to prevent malicious activity.

C. ASes with Unruly Children

Our data establishes that malicious activity is often dispro-
portionately clustered by AS. We now look at whether ASes
with disproportionate malicious activity are tightly clustered.
We begin by labeling as malicious any AS with at least 1%
of its IP addresses appearing in any blacklist, as described
in Section III-A. We then examine each of the BGP updates
for June 2009 to find provider-customer (or parent-child)
relationships. Given two adjacent ASes, we infer which one is
the parent by examining the degrees of the two ASes, similar
to the algorithm described by Gao [15]. We consider the AS
with largest degree to be the provider.

For each provider AS, we consider the extent to which its
customer ASes have been found to be malicious. In the second
column of Table VI, we show the number of provider ASes
with at least three children that have the indicated percentage
of its children as malicious.We see 22 ASes with 100% of their
customers classified as malicious. A total of 194 providers
have at least 50% malicious customer ASes. In comparison,
random links between ASes would result in an AS having an
average of less than 10% of its links to a malicious AS, since
only 3,082 of the 32,193 ASes were labeled malicious.

We repeated this analysis using the definition of malicious-
ness from Section III-B: the AS must have at least 0.25% of
the malicious IP addresses in a data set. We show these results
in the third column of Table VI.Five providers have at least
50% of their customer ASes labeled as malicious.

This analysis shows that there are dense clusters of mali-
cious activity in the Internet. Accordingly, efforts to systemat-
ically reduce malicious activity, via regulation or other means,
could have a substantial impact by targeting a small number
of networks.

IV. A UTONOMOUSSYSTEM CHARACTERISTICS

Having examined the degree of AS malicious behavior, we
now search for other characteristics that differ between mali-
cious and benign ASes. Specifically, we compare ASes where
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TABLE V
NUMBER OF ASES IN EACH DATA SET CONTAINING THE GIVEN PERCENTAGE OF ALLIP ADDRESSES IN THE DATA SET.

Percent of IPs All APWG Bot C&C CleanMX eSoft Local Malware PhishTank Spamhaus Spamhaus SI-Feed SI-DNS SURBL
in data set Sets Spam Patrol SBL XBL
≥ 10%

[9%, 10%) 1
[8%, 9%) 1
[7%, 8%) 1 1
[6%, 7%) 1
[5%, 6%) 1 1
[4%, 5%) 1 1 1 2 1 1 1
[3%, 4%) 1 3 1 1 1 2
[2%, 3%) 3 2 2 2 3 2 1 1 3 1 2
[1%, 2%) 7 5 5 3 7 11 6 3 7 5 10 8

[0.50%, 1%) 16 12 10 16 6 19 16 11 16 20 19 14
[0.25%, 0.50%) 19 20 26 27 25 20 18 18 18 18 27 33 38

TABLE VI
PERCENTAGE OF MALICIOUS CUSTOMERASES FOR PROVIDERS WITH

MORE THAN THREE CUSTOMERS.

Percent of Malicious Number of Provider ASes
Customer ASes Fraction of Advertised Proportion of

IP Space Data Set
100% 22

[90%, 100%) 2
[80%, 90%) 8
[70%, 80%) 17
[60%, 70%) 72 3
[50%, 60%) 73 2
[40%, 50%) 78 5
[30%, 40%) 202 24
[20%, 30%) 239 45
[10%, 20%) 204 78

we have not observed any malicious IP addresses (good ASes),
ASes where we have seen at least one malicious IP address,
ASes which have at least 1% of their IP addresses in one of
our malicious data sets, and ASes representing at least 0.25%
of a blacklist as described in Sections III-A and III-B. For
ASes falling in these categories, we compare BGP behavior,
AS size, and their connectivity. ASes can be disproportionately
malicious for several reasons, such as malicious intent by
the operator of the AS, or just lax administration practices.
Therefore, we do not expect all malicious ASes to have the
same properties as each other or for there to be no overlap
with good ASes. However, we do hope to see trends in the
characteristics of malicious ASes.

A. BGP Behavior

In order to examine BGP behavior, we begin with the
earliest BGP routing table available from the RouteViews
project for June 1, 2009. We then replay in order all of the
BGP updates for the month of June, examining how routes
change in the updates.

We begin by examining routing changes that result in any
AS which originates a prefix becoming completely unreach-
able. We consider an AS to become unreachable when all of
the routes to all of the prefixes originated by that AS have
been withdrawn according to all of the routers that peer with
RouteViews. In total, 5,069 ASes become unreachable at some
point in the month. This is 15.7% of the 32,193 total ASes
we ever see originating a route.

In our data sets of malicious activity, we observed IP
addresses from 14,807 ASes. Of these, 2,319 become un-
reachable at some point. This is the same percentage, 15.7%,
that became unreachable when examining all ASes. It appears
that the chances of becoming completely disconnected or
unreachable is not affected by small degrees of maliciousness.
However, looking at just those ASes where 1% of their IP
addresses have been marked as bad, we see that 24.4% become
unreachable.ASes with the most malicious activity appear
to be disconnected more often than others. However, among
the ASes which make up at least 0.25% of the malicious
IP addresses in their data sets, only 8 (3.0%) ever become
unreachable.

Many of the ASes which become unreachable do not stay
that way for long. We now look at if how long they are
unreachable is dependent on the degree of maliciousness of
the AS. Figure 3 shows the duration of time ASes in each
category become unreachable, except for those making up at
least 0.25% of malicious IP addresses in a data set, which
we exclude from this figure due to the low number of data
points. Some become unreachable multiple times for short
durations; however, the time plotted in this figure represents
the aggregate for each AS. Timestamps on the BGP updates
are at a resolution of one second, so when an AS becomes
unreachable for less than one second, we count it as becoming
unreachable but do not add time for this period.
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We see a significant difference among our categories here.
96% of malicious ASes are disconnected for less than a single
day, with a similar number for ASes with 1% bad IP addresses.
Correspondingly, only 71% for the ASes not identified as
malicious become disconnected for less than a day. On the
high end, while 45.7% of ASes which become unreachable
have malicious behaviors, just 1% of those unreachable for
more than 2 weeks have malicious behaviors.When malicious
ASes become unreachable, they do not tend to stay that way
for long. If these disconnections are intentional de-peerings,
the approach is not effective at isolating the AS for long.

The results for the length of time an AS becomes un-
reachable were opposite of what we initially expected. To
examine routing behavior in further detail, we now considerall
connectivity changes to ASes which originate a route (gaining
or losing a peer), not just those which change its overall
reachability. Of all ASes originating a prefix, 17,286 (53.7%)
have some change during our data period. For malicious ASes,
this is 8,695 (58.7%), and for those with at least 1% malicious
IP addresses, this is 2,036 (66.1%). For those making up
at least .25% of one of our data sets, this is 166 (60.9%).
Malicious behavior in an AS is clearly associated with routing
instability; however, this could be the result of other factors
and not simply the malicious activity.

The presence of connectivity changes may be due to prob-
lems with the other peer involved in the connection. This
is less likely to be the explanation for such changes if an
AS had such changes in its relationships with more than a
single peer. Figure 4 shows the number of peers involved in
connectivity changes with each AS that had such changes.
Among good ASes, only 36% with changes had connectivity
changes with multiple peers. However, among bad ASes, this
is much higher: 50% had a change in relation to more than
one peer. This was similar for those with more than 1% bad
IP addresses, but was worse for those ASes making up at least
0.25% of their data set. For these, 70% changed in relation to
more than a single peer.
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Similarly, Figure 5 shows the total number of connectivity
changes. Among good ASes, 75% of those with changes had

10 or fewer total changes, while this was only 62% for bad
ASes and 45% for bad ASes representing 0.25% of their
data set.Overall, among those with changes, ASes harboring
malicious behavior have a greater number of connectivity
changes than good ASes, and these changes involve more of
their peers.
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B. AS Sizes

We now investigate whether bad ASes have differing sizes
than good ones, to see if either larger ASes or smaller ASes
have a greater tendency towards malicious behaviors. For
each AS, we use the BGP routing table from June 15 to
determine the size of the AS based on the size of the prefixes
they advertise. Results are plotted for our four categoriesin
Figure 6.
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in our blacklists.

We see significant differences between sizes of good ASes
and those containing malicious IP addresses. While the median
size for a good AS is 512 IP addresses, the median for ASes
with any malicious IP addresses at all and those with more than
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1% of their IP addresses malicious is an order of magnitude
larger, and the median for those that represented more than
0.25% of a data set is yet another order of magnitude larger.
Similarly, while 67% of ASes without malicious IP addresses
have 1024 or fewer IP addresses, this is only 22% for those
containing malicious IP addresses, and 1.5% for those that
made up at least 0.25% of a data set.

This result is somewhat expected. The more addresses in
an AS, the more likely at least one will be compromised.
However, the plot for those with more than 1% of their
addresses marked as malicious closely follows the plot for
those with any malicious addresses at all. This is unexpected
because larger ASes would need more total IP addresses to be
malicious to end up in this category.Overall, it appears that
larger ASes are more likely to contain malicious addresses.

C. Degree of AS Peering

We now look at the degree of each AS, which is the number
of other ASes with which it directly connects. In Figure 7,
we show the degrees of ASes containing or not containing
blacklisted IPs. We see thatASes with malicious IP addresses
are more likely to have a higher degree. Both have a median
degree between 1 and 2 indicating that a large portion of both
are stub ASes. However, 99% of good ASes have a degree of
10 or less, while 91% for ASes with at least one malicious
host have that degree. Further, only 65% for ASes with at
least 0.25% of the malicious IP addresses in a data set have a
degree of 10 or less. In general, ASes harboring malicious
traffic appear to have good connectivity, which may affect
efforts to isolate these systems.
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V. RELATED WORK

This work focuses on finding the ASes harboring malicious
activity on the Internet, and investigating the behaviors of
and connections between those ASes. Accordingly, the related
work falls into two broad categories, work which examines AS
topology, and work which attempts to characterize the location
of malicious behaviors.

A. AS Topology

Numerous studies have focused on accurately determining
types of AS relationships, including those by Di Battistaet
al. [16], Dimitropouloset al. [17], Gao [15], and Subrama-
nian et al. [18]. Where we deal with connections between
ASes, we are most concerned just with if a malicious AS is
related to other malicious ones. Therefore to infer the typeof
relationship, we use a simple algorithm similar to the one Gao
describes as her basic algorithm.

Rexford et al. [19] examined BGP routing stability for
the ASes of popular destinations on the Internet. They found
that most BGP instability was from unpopular destinations
and that popular destinations had more stable routes. Work
by Feldmannet al. [20] identifies ASes which cause routing
changes. In our work, we find that ASes containing malicious
IP addresses have disproportionately high routing changes.

Other work deals with malicious activities in the BGP
system itself. One such activity is prefix hijacking, where a
prefix is stolen by advertising a false route. Several papers,
including work by Zhanget al. [21] and many others, seek
to identify hijacking attempts. Zhanget al. also have work
on defending against hijacking attempts [22]. Several other
systems, such as SBGP [23] and soBGP [24], also prevent
prefix hijacking. While we recognize the importance of miti-
gating such malicious behaviors, we focus on malicious hosts
and their originating AS and AS behaviors, not attacks against
BGP itself.

B. Locating malicious behaviors

Our work is directly motivated by the disconnections of
ASes belonging to the ISP Atrivo [1] and the Web hosting
provider McColo [2], [25] in 2008 by their upstream providers,
as well as the 2009 FTC-ordered shutdown of Pricewert [3].
In all three cases, the networks were accused of large amounts
of botnet activity, malware hosting, and spamming. While
these three attracted enough attention for high profile action
against them and coverage by much of the technology news
media, we wanted to see to what extent malicious activity
clustered together in other ASes which have not received so
much attention or drastic action.

Some previous works attempt to locate malicious behavior
at granularities other than ASes. In their study of spyware,
Moshchuk et al. [26] find that certain categories of Web
sites contain more spyware than others. Similarly, work by
Provoset al. [27] finds that 67% of malware download sites
in drive-by downloads are hosted in a single country: China.
While there is insight to be gained by examination at these
other granularities, we focus solely on the AS location of
malicious behavior in the paper.

Other work touches on AS locations of malicious behav-
iors on the Internet. In a paper on spammers’ behaviors,
Ramachandranet al. [28] find that a small number of ASes
are responsible for sending a large amount of spam, with 36%
of all spam coming from just 20 ASes. Konteet al. [29]
examined scam hosting infrastructure. Among their findings
was that for the spam campaigns they examined there was
almost no overlap in the ASes of the spamming machines and
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the ASes where the scam Web sites were hosted. However,
none of these papers has the AS locations of the behavior as
their main focus as we do, and none go on to examine BGP
behaviors of those ASes identified.

The most closely related work, that by Stone-Grosset
al. [30], analyzes ISP networks based on their degree of
involvement in malicious activity. The authors use one of our
blacklists, from PhishTank, as well as other data sources, in-
cluding botnet communication and drive-by-download activity,
for their analysis. Our work augments this work by analyzing
an additional data sources of malicious activity and examining
the BGP behavior of the ASes reported as malicious.

VI. D ISCUSSION

In this Section, we describe the inherent limitations of using
blacklists for research of similar nature to ours and describe
alternative approaches that could be used. We then discuss
how this research could be used in practice.

A. Limitations of Blacklisting

In this work, we used blacklists as ground truth for whether
a machine was engaged in malicious activity or not. However,
this is not the purpose for which these blacklists were cre-
ated: the blacklists are designed to allow other organizations
to prevent possibly malicious traffic from arriving at their
infrastructure. This is different from our goal of providing a
real-time feed of malicious activity that can be used to assess
an AS. As a result, there are a number of factors that can
affect these results:

• Blacklist Administration: Some blacklists use an “au-
tomatic addition/manual deletion” system, automatically
blacklisting any reported IP addresses, with network
administrators being required to manually remove entries
from the blacklists. These administrators may not be
aware of the blacklisting or simply choose not to remove
their machines from the list even after they are reported.
In practice, these lists may see many additions with few
removals, causing entries from long-ago attacks to remain
in the lists even after the termination of the malicious
activity and penalizing clean machines.

• Reporting Bias: Some destinations may report attacks
to blacklists, causing the attacking systems to be listed.
Other destinations may choose not to report attacks. Ac-
cordingly, the reporting may be biased, causing systems
and networks attacking the destinations that report to be
identified while others may attack freely without being
listed. This may introduce biases in the conclusions drawn
through our research.

• DNS Resolutions:Some blacklists provide a list of IP
addresses while others provide host names. To obtain a
consistent data set, these host names must be resolved
to their IP addresses. However, the original reporter of
the IP address may perform the DNS resolution and
obtain different IP addresses from what is resolved later
by researchers. This can be due to temporal changes in
addresses, such as those present in fast flux [31], [32],
or responses tailored to the resolver’s location. Even with

regular resolutions from a large number of vantage points,
it is impossible to be certain that the same IP address was
examined that was reported as malicious.

• DHCP/NAT Effects: Some networks may have a single
machine that is compromised and engaging in attacks
on the Internet, but due to DHCP leasing, it may have
have a larger number of IP addresses from which it has
attacked. In our analysis, this machine may be counted
multiple times, causing the associated AS to appear more
malicious. Likewise, NAT allows multiple machines to
share the same address. Accordingly, multiple malicious
machines would appear to be only a single compromised
machine if they were translated to the same address.
Further, a mixture of malicious and benign machines may
be labeled as malicious and multiple legitimate machines
would be recorded only as a single legitimate machine.
Differences in deployment strategies can greatly amplify
or dampen these effects: a short DHCP lease time with
a mandatory IP change at lease expiration would have
much greater impact than a DHCP environment with long
lease times and little IP address churn. Accordingly some
networks may be disproportionately penalized.

• Hijacked IP Space: Attackers have used IP prefix hi-
jacking to acquire control over legitimate address space,
use the addresses to launch attacks, then release the
route [33]. If these attacks were reported, the AS whose
prefix was hijacked would be penalized, rather than the
actual perpetrators.

• Toxic Assets: With a decreasing availability of IPv4
address space, IP ranges that were previously assigned but
are now vacant are being reused, causing innocent parties
to obtain addresses that have been reported as malicious.
Such innocent parties may be incorrectly identified as
malicious through our research.

B. Alternative Data

With the limitations of using blacklists for assessing AS ma-
liciousness, we explore alternative data that could be analyzed.
This attack history data must be collected by the destination
or by network routing infrastructure.

Some destinations have banded together to share their attack
information to quickly detect industry-wide attacks. A number
of organizations have established Information Sharing and
Analysis Centers (ISACs) to share information about attacks
they encounter [34]. Some of these ISACs operate darknets,
or data collection operations on unused IP address space, to
detect attacks being randomly targeted and operate honeypots
to learn more about attacks. These organizations may have
live data feeds that can be used to detect systems engaged
in scanning or attacks. However, this data will have reporting
biases: 1) these institutions regard security as a criticalneed
and do not represent the Internet as a whole and 2) only some
attacks may appear in the data, depending on the collection
systems they use. Accordingly, attackers that avoid these
systems, or attackers that use techniques that are not easily
automatically detected, would not appear in these data sets.

Network and host-based intrusion detection services may
collect and aggregate data on attacks and provide them to the
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security service vendors to analyze. These vendors can analyze
sources of the attack traffic and perform analysis similar to
our own. Unfortunately, these vendors must typically carefully
guard this information as it may expose sensitive information
about their client organizations. This limits the ability of third-
party researchers to analyze the data.

Other data can be captured by leveraging and observing the
infrastructure used by attackers. In the work by Stone-Grosset
al. [30], the authors observed botnet command and control
channels, allowing them to see members of the botnets in real-
time. Such work can facilitate observations about infection du-
ration and cleansing efforts, which is challenging with black-
lists. However, attackers regularly change and evolve their
command and control infrastructure, requiring researchers to
continually infiltrate new attacker infrastructure. Further, this
analysis introduces bias: researchers can only observe botnet-
based attacks and only attacks in which they have identified the
command and control infrastructure. Accordingly, researchers
risk missing smaller botnets which may be more region-
focused.

While there are a few possible alternative routes for ob-
taining attack data, there is no perfect data set for analysis.
Without a system for widespread, systematic reporting of
attacks, it will be impossible to obtain unbiased data to
analyze for attacks. However, such a system could be created
by regulators to evaluate ISP networks, allowing complaints
to be filed. Industry self-regulation strategies, such as those
used in organizations like the Better Business Bureau, could
also create a system for reporting. However, while creating
such a production system, researchers would have to create
appropriate trust models to ensure that attackers could not
simply pollute the system with false entries.

C. Applications of Our Research

Comparing ASes and their degree of maliciousness can be
used in several applications, including public policy, peering
preference, and destination prioritization.

Governments have increasingly recognized that critical na-
tional assets are exposed to the Internet and that cyber attacks
can have profound implications on national operation. Due to
the distribution of compromised machines, these nations must
address attacks coming from within their borders. Accordingly,
regulators may seek to curtail computer attacks; however,
mechanisms to evaluate ASes, regulators would be unable
to establish baselines for compliance and what constitutes
responsible network management. Our approach can provide
these metrics.

Alternatively, ISPs may choose to self-regulate to ward
off government intervention. To influence others to adopt
better security practices, peers may place requirements for
controlling the spread of malicious machines in their peering
agreements in exchange for lower peering costs. Larger ISPs
could pressure their customers to practice better security.

Finally, destination networks can leverage information on
AS maliciousness to determine how to prioritize traffic. In
the case of bandwidth contention, a destination may prefer
traffic from an AS with low malicious activity over a highly

malicious AS since doing so would be more likely to service
a legitimate user. Maliciousness scores could also be used in
spam filtering; however, this cannot be a sole discriminator
since there may be legitimate machines in many highly mali-
cious networks.

VII. C ONCLUSION

In this study, we examined whether some networks are safe
harbors for malicious activity. We found that several ASes have
high concentrations of malicious IP addresses while othersrep-
resent disproportionately higher malicious activity thantheir
equivalently sized peers. This shows that while botnets are
commonly being used to launch attacks, malicious hosts may
still be clumped by network providers. In spite of these results,
traffic cannot simply be declared malicious based solely on
its originating AS even for ASes with the high degree of
maliciousness, as this would have extensive collateral damage,
penalizing legitimate traffic as well. However, identifying if
traffic is coming from ASes known to be malicious can be
used as one component to help make such a decision.

Our analysis can be used to help increase ISP accountability
and can become a mechanism to combat malicious activity. By
providing a comparison with equivalently-sized networks,we
can highlight the ASes most in need of attention and which
would only offer diminishing returns. This information can
also be used in peering agreements to place pressure on ISPs
to respond to malicious activity.
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