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Abstract—While many attacks are distributed across botnets,
investigators and network operators have recently identigd
malicious networks through high profile autonomous systemAS)
de-peerings and network shut-downs. In this paper, we exple
whether some ASes indeed are safe havens for malicious adtyv
We look for ISPs and ASes that exhibit disproportionately hgh
malicious behavior using ten popular blacklists, plus lochspam

benefits. First, ISPs could use them to build identification
of malicious networks into their peering agreements. As an
example, provider ISPs may use the metrics to require their
customers to limit the amount of malicious activity in their
networks to avoid harboring criminals. ISPs could also hse t
metrics to determine the effectiveness of their effortscimbat

data, and extensive DNS resolutions based on the contents ofgbyse and compare themselves with other networks. Also,

the blacklists. We find that some ASes have over 80% of their
routable IP address space blacklisted. Yet others accounof large
fractions of blacklisted IP addresses. Several ASes regulg peer
with ASes associated with significant malicious activity. W also
find that malicious ASes as a whole differ from benign ones in
other properties not obviously related to their malicious ativities,
such as more frequent connectivity changes with their BGP pas.
Overall, we conclude that examining malicious activity at /S
granularity can unearth networks with lax security or those that
harbor cybercrime.

Index Terms—Autonomous Systems, Security.

I. INTRODUCTION

when receiving traffic, a destination network could priast
traffic based on the cleanliness of ASes, which the metrics
can help estimate. This would allow a network under attack
to prioritize traffic that is less likely to be associated hwit
attackers. Finally, such metrics could also aid spam filtgri
programs in their scoring of email messages.

To determine which ASes are malicious, we use ten of the
most commonly-used blacklists for spam, phishing, malware
and botnet activities for a period of a month, in addition to
URLs from spam collected at our department’'s email server.
These blacklists either contain host names or IP addres$es t
blacklisted. For host name-based blacklists, we first dater

The Internet is plagued by malicious activity, from spane |p addresses for each blocked host using real-time DNS
and phishing to malware and denial-of-service (DoS) aiacky eries. This gives us IP addresses of all blacklisted hosts
Much of it thrives on armies of compromised hosts, Qf oyr placklists. We then use BGP routing tables to group
botnets which are scattered throughout the Internet. Howevgfase |P addresses into their originating ASes. Upon gnayipi
malicious activity is not necessarily evenly distributetta®s ihase addresses by AS, we compare ASes by the percent of

the Internet: some networks may employ lax security, reslt

infected machines and the rate at which they are cleaned up.

in large populations of compromised machines, while otheffing data from the RouteViews Project [4], we examine other
may tightly secure their network and not have any malicioys,aracteristics of the malicious ASes, such as whether thei
activity. Further, some networks may exist solely t0 engag@nnectivity to other ASes changes more often than those

in malicious activity. Several recent ISP enforcementoand;

without malicious activity. The key findings of our study are

such as the Atrivo and McColo autonomous system (AS)
de-peerings [1], [2] and the FTC closure of Pricewert net- o
works [3], highlight that there are networks that exist diynp

to launch attacks. In this paper, we examine whether we can
find malicious networks in a systematic manner using exjstin
blacklists.

A systematic detection of disproportionately malicious-ne
works can be used to build metrics which may be used to
determine if a network is harboring a significant amount of
malicious activity. Such metrics may offer several praadtic
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A large fraction of routable space is malicious for some
ASes: Four ISPs, 2 from Ukraine, one from Iran, and
one from Belarus, have over 80% of their routable IP
addresses blacklisted. This raises concerns regarding the
purpose of such ISPs.

Some ASes account for significantly large fractions of
blacklists: Four ASes, three of which are US-based host-
ing providers and one large broadband service provider
in Turkey, account for over 6% of at least one of the
blacklists we tested.

Some providers regularly peer with malicious ASes: We
find 22 provider ISPs with 100% of their customer ASes
engaged in significant malicious activity.

Malicious ASes differ from benign ones in other ways:
They are more likely to become completely unreachable
than those which have less malicious activity, and they
are likely to have more peers. However, the duration of
unreachability is short for these ASes, which may have



implications for orchestrated de-peering attempts. These IP addresses are those associated with the dom#in itse
Overall, these results confirm that examining maliciougnd with the domain witkuwv prepended. We receive this feed
activity at the AS granularity can help find networks tha@nce per day, and refer to it &URBL.
are disproportionately bad, providing a metric for focgsin Finally, we harvest URLs from spam sent to the Computer
network clean-up efforts. Science Department at Indiana University (IU) and use it to
The remainder of this paper is organized as follows. ¢reate theLocal Spamdata set. This is a daily feed. We
Section II, we describe our data collection and data seéxtract host names from this feed and perform DNS resolsition
In Section Ill, we examine the degree to which ASes at@ obtain corresponding IP addresses.
malicious. Section IV examines the characteristics of rmrm 3) Spam SendersMail server can use IP blacklisting to
and malicious ASes, including BGP behavior and AS sizprevent compromised machines from sending mail directly.
We describe related work in Section V and discuss tHgpamhaus runs the most widely-used blacklist in this cantex
limitations and alternatives to using blacklists for thislysis the SBL [9]. We obtain a copy of this blacklist every hour,

in Section VI. We conclude in Section VII. and extract IP addresses to create §pamhaus SBL data
set. Data collection for th&panhaus SBL data set started
1. DATA COLLECTION a day later than the others, beginning on June 2, 2009.

To create a comprehensive evaluation of an AS, we u 4 Exploited Hosts: Spamhaus aIsp _maintain§ a segond
iF klist, known as the XBL [10]. This list contains prefixes

a diverse set of data sources. Each of our data sources ndividual 1P add fh inf d with eits|
machines reported as engaging in some form of malicio ten individual IP addresses) of hosts infected with ekp

activity. Our data sets have a few limitations. We discus#ith often u'_sed to sen_d spam. This includes open proxies, com-
in Section VI. puters infected with viruses that are known to send spam,

and other exploits. This data is updated every half hour, and
is labeledSpanmhaus XBL. Data collection for this data set

A. Data Sets started a day later than the others, beginning on June 2,.2009

For each set, data was collected from June 1, 2009 to Jung) Malware Downloads:Malicious software, omalwarg
30, 2009 unless otherwise indicated. We summarize the daigluding viruses, worms, and trojans, have harmful effect
sources in Table I, and describe them below. the computers they infect. Three of our data sets list Wels sit

1) Phishing SitesPhishing sites attempt to collect sensitivevhich host malware downloads. The Clean-MX Viruswatch
data, such as login credentials, credit card numbers, atcomailing list [11], eSoft [12], and Malware Patrol [13], atide-
numbers, and social security numbers, from users by impgendently collect URLs which host malware. The Viruswatch
sonating legitimate organizations or brands. The AntsRing mailing list periodically sends out emails indicating ngwl
Working Group (APWG) [5] and PhishTank [6] have amongiscovered URLs with viruses. We receive mails from eSoft
the largest data feeds listing such phishing sites. We e thwith new URLs containing malware, along with a malware
feeds, referred to subsequently ABWG and Phi shTank sample, as they are discovered. We download new URLSs from
data sets, respectively. Both of these feeds contain URLsMélware Patrol every hour. In each case, we extract host
phishing sites, along with other meta-data. On an hourlisbashames, and perform DNS resolutions to obtain the set of IP
we extract host names from URLs currently in the feed, andidresses we use. We label these data@etanMX, eSof t ,
perform DNS resolutions in each host name to get lists of hdMal war e Pat r ol , respectively.
addresses associated with these feeds. The PhishTanketlata $) Bot Command and ControlBotnets consist of groups
had a two-day outage on June 20 and June 21 causing Ugftccompromised machines used for malicious purposes on
only have 28 days of data. the Internet. Miscreants often use them for sending spam and

2) Spam/Scam SiteSimilar to their phishing site brethren,for hosting phishing and scam sites. Bots must get their in-
scam sites are sites that are advertised in unsolicitedagess structions from their bot masters, often through commarnt an
These spam-advertised sites may actually be phishing bescontrol servers. The ShadowServer Foundation [14] pravide
running some other type of scam, or provide actual legitmalists of botnet command and control servers along with their

products or services. We use lists of scam sites from twoeof tfp addresses. We have an hourly access to this data, referred
major collectors of such information, Support Intelligeri¢] to asBot C&C subsequently.

and SURBL [8].
We receive the feed from Support Intelligence every six ,
hours. This feed contains URLs from spam as well as assogi- Pata Set Comparisons
ated IP addresses. We use the IP addresses &8l elieed Due to differing goals, methodologies, and data sources,
data set. Not every URL in this feed has an associated é8ch data set we use can be expected to contain IP addresses
address, and for some that do, when we resolve the associatetiseen in other data sets. By examining the overlap of IP
host names we get different addresses. Therefore, we use adresses from different data sets, we can see how often IP
own resolutions of these as another data Skt,DNS. addresses are used for multiple different malicious pepos
SURBL also collects domain names from URLs containdd Table Il, we show the number of data sets containing each
in spam. Although they typically only allow users to perforniP address. Th&panhaus XBL is roughly three orders of
lookups on the domain names in their list, we have alsnagnitude larger than any other data set, so the vast majorit
arranged to receive the associated IP addresses from thefrP addresses appear only in that single data set. It ibdurt



TABLE |
OVERVIEW OF DATA SETS

Duration | Unique IP | Unique | Median IPs| Std. Dev.
Label Description (in days) | Addresses| ASes Per AS IPs per AS
APWG Phishing URLs from the Anti-Phishing Working Group 30 9,560 1,803 2 18.0
Bot C&C Botnet command and control IPs from the ShadowServer Faiondg 30 1,986 611 1 11.4
CleanMX Malware serving sites from the CleanMX VirusWatch mailini | 30 2,974 687 1 12.0
eSoft Malware serving sites from eSoft, Inc. 30 8,000 1,196 2 27.2
Local Spam URLs from spam messages received by the IU CS Department 30 5,495 1,024 1 16.5
Malware Patrol | MalwarePatrol's block list for malware-serving sites 30 871 368 1 5.3
PhishTank Phishing URLs from PhishTank 28 7,143 1,580 1 14.2
Spamhaus SBL| Verified spam sources from Spamhaus.org Block List 29 6,422 2,005 1 8.9
Spamhaus XBL| Hijacked machines from Spamhaus.org Exploit Block List 29 29,585,604 13,580 9 31,568.1
Sl-Feed URLs and IP addresses from spam emails from Support Irgeltig 30 7,591 1,420 1 20.2
SI-DNS IP addresses from DNS resolutions on 8ie Feed data set 30 4,448 911 1 11.8
SURBL Host names appearing in spam messages from SURBL 30 29,324 2,739 2 47.2
- . TABLE Il
unsurprising that some IP addresses appear in two or thtae (_ja JACCARD SIMILARITY BETWEEN |P ADDRESSES IN EACH DATA SET
sets since some of our data sets track the same information. _ o
. . O [a8)
We see that some IP addresses appeared in multiple data sets, £ E o
with 8 IP addresses appearing in 9 of our data sets and another 9| % Sl |2 8 x|l
. . . . . .. . = 5]
7 appearing in 8 sets. This indicates that malicious mashine ol 8 15|38 % S E| 2|3 g
. .. .. o — = joR - -~
are occasionally used for many forms of malicious activity; - 03 ((-))6 ? gz ? ch cg tg (6)3 wo
P APW . 05 o1 2401 04]. 1
however, a large majority appear not to be. Bot C&C ololololololololo
CleanMX 07| .01].06.07| 0 |.01]|.01]|.02
TABLE Il eSoft 01| 01f.05| 0 |.02|.01]|.02
Local Spam .01 | .02 | .01 | .06 | .09 | .05
DEGREE TO WHICH ANIP ADDRESS APPEARS IN MULTIPLE BLACKLISTS Malware Patrol o1l o | o1l o1l o1
_ _ Phishtank .01| .02 | .02 | .05
Number of Blacklists with[ Number of Spamhaus SBL 01| .01 .01
Given IP Address IP Addresses| Sl-Feed 49 | .06
1 29,631,573 SI-DNS -06
2 9,566
3 3,650
4 1,290 . .
5 320 the ASes represented by the IP addresses contained in each
6 112 data set. In order to map IP addresses to an AS, we used
g 279 a June 15, 2009 BGP routing table from the RouteViews
9 8 Project [4]. We chose this date because it is in the middle

of our data collection and is expected to give us the best

Now, we look at similarity between any two data sets. westimate of the routing information from that duration. We
calculate the Jaccard similarity coefficient between this se°@ded each advertised BGP prefix and originating AS from
of IP addresses in each. LéPs. be the set of IP addressedhe RouteViews data into a trie data structure, commonliyg use

in data setS;. Then the Jaccard similarity of two data setly routers in deciding the next interface to use to forward
is given by J(IPs,.IPs) |1Ps,NIPs,| Results for all packets, and performed longest prefix matches on each IP

|1 Ps;UIPs,|* ) address to determine the AS associated with the address.
data sets except f@pamhaus XBL are shown in Table lll.  \yith this mapped data, we then calculate the Jaccard

We ignore the XBL because its size is orders of magnitu%ﬁnilarities of the ASes in the data sets. L&Ss be the

bigger than any other data set, hence the Jaccard coeficiel of ASes represented in data Set The Jaccard similarity

involving it would be extremely small. As expected, we se® thye 1he two data sets at the AS granularity is then given by
highest similarity between the two phishing data sets, aed tJ(AS ASg) = |ASs,NASs, | Results for this calculation
two derived from Support Intelligence data. Notably, Bt Sis 4195 |ASs,UASs; " )
C&C data set shares at most 4 IP addresses with any otAE¢ Shown in Table IV. Between all pairs of data sets, there
data set, while most others, even measuring different tppes!s much more similarity with re_gards to ASes than therelwas
bad behavior, have greater similarity to each other. Algrou N terms of IP addresses. While the same IP address is not
one of the most similar, the two phishing data sets still onRften used for multiple different malicious activities, hiple
share 24% of their combined IP addresses with each other. Theaddresses in an AS appear to be used this way more often.
malware data sets have even less similarity in IP addresdggdardless of the type of malicious activity an AS was seen
This analysis exposes some of the practical limitationssafgr  €"9@ged in, the presence of an AS in multiple blacklistscoul
blacklists: some malicious behavior is reported and captur®® US€d as a characteristic to help determine if other later
by some blacklists, while other behavior goes unreportgd. SUSPiCious activities are truly malicious.
using many different blacklist providers, we have a bettewv
of malicious activity than would otherwise be possible. IIl. DEGREE OFAUTONOMOUS SYSTEM MALICIOUSNESS

Next, we map these IP addresses to their autonomous sydJsing the AS information corresponding to each malicious
tems and repeat a similar calculation for the overlap betwel, we examined the extent of AS maliciousness from two



TABLE IV o -
JACCARD SIMILARITY BETWEEN ASES IN EACH DATA SET the other results difficult to read. This Figure shows sdvera

interesting results. First, a total of 31,263 ASes were Hibesl

- -
e | & @ in our BGP routing data and 46.8% of these had at least one
9|3 Sle |2 8 lz|anl. malicious IP in themWhile a majority of them have little to
- [0} .. —
°ls | 5|3 (_% 5 E| Q|3 % no malicious activity, a small number of ASes have as much
o = = joR - - . . ..
- @ ge E 2 = &9 1/276 g) ? w3 as 0.5-10% of their IP addresses engaged in maliciousness.
APW A7 ). 34| 25| .14 4 . 31| 24 4 : .
Bot C&C T8l 17 151 16| 18| 14| 16| 15| 1z In fact, in t_heSI - Feed data set, one AS had 9.25% of its
Clseaf?MX 35 3411 gg 5; g gg gg gg addresses in the data set. No other AS had 5% or more of its
Local Spam Tl sl 31l ;| 55| addresses in any of these data sets.
Malware Patrol 16| 12 | 15| 17 | 12
Phishtank 26 | .29 | .23 | .38
Spamhaus SBL| 27| 20| 29 10.000% f————T————T 1 Lt
Sl-Feed .58 | .33 2 Bot C&C --%- | |
SI-DNS .26 c CIeanSNI)é e o
' eSoft —&—
;) 1.000% g Local Spam B
-'(7; T Malware Patrol -- ® -- |
o ¢+ PhishTank -— 24—
perspectives: the percentage of the AS found to be blaeklist T Spamn e 1]
; ) 0.100% |- Qreed M
and the percentage of the blacklist each AS constitutes. We e
now describe both approaches and their results in detail. W&
then examine the temporal behavior of listed machines amd t§ 0.010% | e
peering relationships of malicious networks. 5
< 0.001% F e
A. Examination of ASes by Fraction of Advertised IP Space%
Given the number of malicious IP addresses associat@doooo% T O s e
with an AS, the most straight-forward approach to evalgatin 1 10 100 1000 10000 100000

the ASes for maliciousness would be to simply order the Autonomous System Index (sorted by percent bad)

ASes by the number of malicious IP addresses. However . .
. . . . 1. Percentage of badness for each AS. The AS indices eox-txis

such an analysis would penalize the larger ASes: they S”“Bt independent across data sets with different ASes érlgitthe highest

have more addresses so they have more hosts that coulcdpeentage of maliciousness in each data set.

compromised and blacklisted. Accordingly we must consider

the overall size of the AS as a factor when looking for ASes

that are disproportionately bad. 100.000% T
There are no direct sources that help estimate the s‘é)e All Datasets == - | |

of an AS. Even thewhois database, which contains contacg 10.000% E

information about ASes in addition to detailed informatiors

about domain names and IP addresses, does not confgin.o00% E

information about which AS owns which IP prefix. Howeverg ]

the prefixes advertised by an AS can be used to determigeo.100% E

the maximum number of IP addresses associated with tRe ]

AS. While ASes often have unused IP addresses in e%h(),om%

of their prefixes, and it is difficult to determine just how

many addresses are unused, this allows us to obtain a rOlg;)I”@) 001%

approximation for the AS size, which may be considered ap

upper bound. We again extracted the prefix and originating 00000 b v v oo L

information from the June 15, 2009 BGP RouteViews routing Aultonomo ulg Syste rrllolon dex (é%or(t)e db ;%ngcentlt?g%o)o

table. We loaded this information into a trie data structase

before. For each prefix associated with an originating A, ﬂ]: ig. 2. Percentage of badness for each AS inSphanhaus XBL blacklist

allowed us to determine the number of IP addresses assbCiai@ across all blacklists combined.

with the prefix. In the process, we were careful to exclude any

sub-prefixes associated with other ASes. Such a sub-prefixn Figure 2, we show the same results for Sganmhaus

may exist, for example, if an ISP leases part of its addreXBL data set and the combination of each data set. We note

space to a customer with their own AS. After adding togethérat the two lines are very similar and almost completelyrove

the address space from each of the prefixes for each AS, lap because of the size of tf8panmhaus XBL data set. We

had the total number of IP addresses advertised by each A8und 58 ASes with over 100,000 compromised machines in
Next, we determine the rough percentage of each AS thhis data set. Additionally, 255 ASes had between 10,000 and

appears in each of our data sets. In Figure 1, we show th@0,000 machines blacklisted. When looking at the pergenta

percentage of badness for each AS present in our data setsgach AS’s advertised address space marked as malicious,

excluding theSpamhaus XBL data set. We separated outve found thatfour ISPs, two from Ukraine, one from lIran,

the Spanhaus XBL due to its much larger size which madeand one from Belarus, had at least 80% of their advertised




IP space blacklistedAnother 49 in theéSpanhaus XBL data the Bot C&C data set, we see that one AS contains 9.11%
set had 50-80% of their addresses listed. Further, 556 AS#<he IP addresses in the data set, yet its advertised addres
had at least 10% but less than 50% of their addresses listsplace represents only 0.002% of the address space adwkrtise
These ASes have a disproportionately high degree of reportey all ASes in the data sefThe next AS in this list, with
malicious behavior, which may be caused by reporting bie®,66% of the listed IP addresses represents only 0.006% of
lax security at the AS, or intentional support of cybercritme the advertised addresses in the listed ASes. These two ASes
any of these cases, these ASes may warrant greater attentwa a large broadband ISP from Turkey and a hosting service
provider from the US. Incidentally, the US-based hosting

B. Examination of ASes by Proportion of Data Set provider also accounts for 7-8% of all blacklisted IP addess

While examining the percentage of an AS that is bIacIE—urther' inSpamhaus XBL andS| - Feed data sets, we find

listed can highlight ASes with disproportionately high contwo more US-based hosting providers that account for over 6-

centrations of blacklisted hosts, it requires large data eé 8

malicious hosts. While th&pamhaus XBL data set shows h di tionatelv hiah fracti f ted madici

this clearly, other data sets are not large enough to disithg havte ?l_h'Smegr lona (Tdy '9 r?c lon o t:ep?r edm h N th

atypically malicious networks. However, rather than cdasi . osts These Ases could warrant more atiéntion, such as the
Q\_/esnganons of Atrivo or McColo [1], [2]. We believe that

the AS to be malicious based on the percentage of its blai imate ISPS with di tionatelv high maliciousii
listed address space, we can instead examine the percen %@g&ma € 15F'S with disproportionately high maliciou \at_y
d to provide tighter account controls, particularly he t

of a data set for which an AS accounts. This can be usBd . ) o .
to highlight ASes with a large number of blacklisted host&?S€ of hosting providers, or seek opportunities to provide
ti-virus or firewalling services to prevent maliciousiaby.

that might not otherwise stand-out due to the size of sorfi8
blacklists. We note that not all highlighted ASes are equal. . .
in smaller data sets, an AS maygbeghighlighted becauqseaaé'f ASes with Unr_uIy Children o - )
chance with small numbers. However, this approach may ﬁndo_ur data establishes that malicious activity is often dispr
concentrations of malicious activity, even using smallatad Portionately clustered by AS. We now look at whether ASes
sets. with disproportionate malicious activity are tightly ctased.

In Table V, we show for each data set the number of AS¥¥e begin by labeling as malicious any AS with at least 1%
containing at least 0.25% of the IP addresses in the d&faits II_D addresses appearing_in any blacklist, as described
set. However, we wanted to avoid penalizing large ASes tHatSection IlI-A. We then examine each of the BGP updates
advertise large address spaces and do not necessarilynacctf June 2009 to find provider-customer (or parent-child)

for a disproportionate amount of maliciousness in that ddigationships. Given two adjacent ASes, we infer which ane i
set. Toward that goal, we perform the following calculagion the parent by examining the degrees of the two ASes, similar

Let ASg, be the set of ASes represented in dataSetand (O the algorithm described by Gao [15]. We consider the AS

IPs, be the set of IP addresses in the data set. For each Wi largest degree to be the provider. o

a; € ASs,, let IP, be the set of IP addresses in the AS FO each provider AS, we consider the extent to which its
i aj .- .

(without regards to whether the IP addresses themselves gfglomer ASes have been found to be malicious. In the second

in the data set). Then the IP addresses we count as malici6@&/mn of Table VI, we show the number of provider ASes

are those which satisfy the following two inequalities. with at least three children that have the indicated peeggnt
of its children as maliciousVe see 22 ASes with 100% of their

% of these blacklists.
Overall, our results show that a small number of ASes

|1 Pa; N 1P, | ~ 0025 customers classified as malicious. A total of 194 providers
|1 Ps,| have at least 50% malicious customer AS@escomparison,
1P, |IP,, N1IPs,| random links between ASes would result in an AS having an
UT average of less than 10% of its links to a malicious AS, since
Z 1P, | ' only 3,082 of the 32,193 ASes were labeled malicious.

axEASs, We repeated this analysis using the definition of malicious-

The first of these inequalities simply captures ASes coness from Section IlI-B: the AS must have at least 0.25% of
taining at least 0.25% of the IP addresses in the data set. The malicious IP addresses in a data set. We show thesesresult
second ignores ASes where the proportion of the address spiacthe third column of Table VIFive providers have at least
advertised by all ASes belonging to the data set advertisedos of their customer ASes labeled as malicious
by the AS in question is greater than a factor of ten lessThis analysis shows that there are dense clusters of mali-
than its proportion of the IP addresses. For example, if @ious activity in the InternetAccordingly, efforts to systemat-
AS contained exactly 0.25% of the IP addresses in the détally reduce malicious activity, via regulation or otheeams,
set, we would list it if it accounted for less then 0.025% ofould have a substantial impact by targeting a small number
the address space of all ASes in the data set, but ignorefitnetworks.
otherwise.

We can see that some ASes have a high concentrations of V. AUTONOMOUSSYSTEM CHARACTERISTICS
malicious activity. Focusing on the top few rows of Table V, Having examined the degree of AS malicious behavior, we
we note that several ASes account for more than 6% wéw search for other characteristics that differ betweefi-ma
blacklisted IP addresses in various data seds.example, in cious and benign ASes. Specifically, we compare ASes where



TABLE V
NUMBER OF ASES IN EACH DATA SET CONTAINING THE GIVEN PERCENTAGE OF ALUP ADDRESSES IN THE DATA SET

Percent of IPs | All APWG | Bot C&C | CleanMX | eSoft Local Mal war e | Phi shTank | Spanhaus | Spanmhaus | SI-Feed | SI-DNS | SURBL
in data set Sets Spam Pat r ol SBL XBL
> 10%
[9%, 10%) 1
8%, 9%) 1
7%, 8%) 1 1
6%, 7%) 1
50, 6%) 1 1
4%, 5%) 1 1 1 2 1 1 1
3%, 4%) 1 3 1 1 1 2
2%, 3%) 3 2 2 2 3 2 1 1 3 1 2
1%, 2%) 7 5 5 3 7 11 6 3 7 5 10 8
[0.50%, 1%) 16 12 10 16 6 19 16 11 16 20 19 14
[0.25%, 0.50%)| 19 20 26 27 25 20 18 18 18 18 27 33 38
TABLE VI - .
PERCENTAGE OF MALICIOUS CUSTOMERASES FOR PROVIDERS WITH In our data sets of malicious activity, we observed IP
MORE THAN THREE CUSTOMERS addresses from 14,807 ASes. Of these, 2,319 become un-
_ , reachable at some point. This is the same percentage, 15.7%,
Percent of Malicious Number of Provider ASes L.
Customer ASes | Fraction of Advertised| Proportion of that became unreachable when examining all ASes. It appears
IP Space Data Set that the chances of becoming completely disconnected or
goéoologow 222 unreachable is not affected by small degrees of malici@ssne
[[800;0’ 90%‘;) 5 However, looking at just those ASes where 1% of their IP
[70%, 80%) 17 addresses have been marked as bad, we see that 24.4% become
[282;0, ggz;og ;g 2 unreachableASes with the most malicious activity appear
{400/2’ 500/2) 78 5 to be disconnected more often than othdt#ewever, among
[30%, 40%) 202 24 the ASes which make up at least 0.25% of the malicious
[20%, 30%) 239 45 IP addresses in their data sets, only 8 (3.0%) ever become
[10%, 20%) 204 78
unreachable.

Many of the ASes which become unreachable do not stay
that way for long. We now look at if how long they are

we have not observed any malicious IP addresses (good ASggyeachable is dependent on the degree of maliciousness of
ASes where we have seen at least one malicious IP addréise, AS. Figure 3 shows the duration of time ASes in each
ASes which have at least 1% of their IP addresses in oneagftegory become unreachable, except for those making up at
our malicious data sets, and ASes representing at leasy0.28ast 0.25% of malicious IP addresses in a data set, which
of a blacklist as described in Sections IlI-A and 1II-B. Fowe exclude from this figure due to the low number of data
ASes falling in these categories, we compare BGP behavipgints. Some become unreachable multiple times for short
AS size, and their connectivity. ASes can be disproportielga durations; however, the time plotted in this figure représen
malicious for several reasons, such as malicious intent Be aggregate for each AS. Timestamps on the BGP updates
the operator of the AS, or just lax administration practicegre at a resolution of one second, so when an AS becomes
Therefore, we do not expect all malicious ASes to have ttgareachable for less than one second, we count it as becoming
same properties as each other or for there to be no overlgeachable but do not add time for this period.
with good ASes. However, we do hope to see trends in the
characteristics of malicious ASes. 100% —— == T T T T

QOUb [

BOU T ]

A. BGP Behavior 2

In order to examine BGP behavior, we begin with the(<9
earliest BGP routing table available from the RouteViewsS 80% [
project for June 1, 2009. We then replay in order all Of theS 500 b
BGP updates for the month of June, examining how routehg 40% b
change in the updates. € 3006 b

We begin by examining routing changes that result in an@

AS which originates a prefix becoming completely unreach- 20%

T —_—-——

good ASes

able. We consider an AS to become unreachable when all of 10% [ rgg,Seswimalicious Ps +-vv2+:
the routes to all of the prefixes originated by that AS have o% 3 3 i 5 = 20
been withdrawn according to all of the routers that peer with Time AS Unreachable (days)

RouteViews. In total, 5,069 ASes become unreachable at some
point in the month. This is 15.7% of the 32,193 total ASessg. 3.  Unreachability duration for good and bad ASes whigttdme
we ever see originating a route. unreachable during our data period.



We see a significant difference among our categories het@. or fewer total changes, while this was only 62% for bad
96% of malicious ASes are disconnected for less than a singiSes and 45% for bad ASes representing 0.25% of their
day, with a similar number for ASes with 1% bad IP addressetata setOverall, among those with changes, ASes harboring
Correspondingly, only 71% for the ASes not identified asalicious behavior have a greater number of connectivity
malicious become disconnected for less than a day. On ttleanges than good ASes, and these changes involve more of
high end, while 45.7% of ASes which become unreachalleeir peers.
have malicious behaviors, just 1% of those unreachable for
more than 2 weeks have malicious behavid¥hien malicious  100%
ASes become unreachable, they do not tend to stay that wayggos |-
for long. If these disconnections are intentional de-peerings, 80% b
the approach is not effective at isolating the AS for long.

The results for the length of time an AS becomes un‘Q T0% [
reachable were opposite of what we initially expected. Tg 60% e
examine routing behavior in further detail, we now const@ler 2 5096 |- o
connectivity changes to ASes which originate a route (gaini g 40%
or losing a peer), not just those which change its overa
reachability. Of all ASes originating a prefix, 17,286 (58)7 3 80% [kl
have some change during our data period. For malicious ASes,20% [
this is 8,695 (58.7%), and for those with at least 1% malisiou 1006} f
IP addresses, this is 2,036 (66.1%). For those making up 0% L :
at least .25% of one of our data sets, this is 166 (60.9%). 1 Number of C 10 tivity Ch 100
Malicious behavior in an AS is clearly associated with rogti umber ot Lonnectivity Lhanges
InStablllty;. however, thl.s .COUId b.e .the result of other tast Fig. 5. Number of connectivity changes for each origin ASwsitich changes
and not simply the malicious activity. in our data period.

The presence of connectivity changes may be due to prob-
lems with the other peer involved in the connection. This
is less likely to be the explanation for such changes if an )

AS had such changes in its relationships with more thanBa AS Sizes

single peer. Figure 4 shows the number of peers involved inWe now investigate whether bad ASes have differing sizes
connectivity changes with each AS that had such chang#san good ones, to see if either larger ASes or smaller ASes
Among good ASes, only 36% with changes had connectivinave a greater tendency towards malicious behaviors. For
changes with multiple peers. However, among bad ASes, tieisch AS, we use the BGP routing table from June 15 to
is much higher: 50% had a change in relation to more thaletermine the size of the AS based on the size of the prefixes
one peer. This was similar for those with more than 1% bdhey advertise. Results are plotted for our four categdries

IP addresses, but was worse for those ASes making up at |gzgtire 6.

0.25% of their data set. For these, 70% changed in relation to

good ASes
ASes w/malicious IPs =sssss:
ASes w/>1% malicious |IPs ===== M
ASes rep. >.25% data set s

more than a single peer. 100% ———r———1— e
QO [ -
100%
80Y [ -
90% [ B 4]
) TOY [ g -
w80% - <60
L .
%70%"”"""""' - ?1)
< S 500 [ -
© 60% | — =
> (—:‘:;40%-”””"”"”" b
250% wseas | g o
E= S30%fF o f B .
(—:‘:5540%“— O - H
E .o 200 e e g
330/0 A 0, {" & ASes w/malicious IPs =x=sss:
®) 10% oo LT ASes W/>1% malicious IPs ===== M
20% [ v y X — o . <1 o . ASes rep. >.25% data set
00 % = LI T " n P n P n P n P
1O frrrrrmm Aslej;‘”ma:!c!ous:gs """" U "1 10 100 1000 10000 100000 1e+06 le+07 1e+08
ASes rep. >.25% data set wae Size of ASN (number of IP addresses)
0% . —— . —
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10
Number of Peers Involved in Connectivity Changes Fig. 6. Sizes of ASes containing or not containing malicitP®saddresses
in our blacklists.

Fig. 4. Number of peers involved in connectivity changes dach origin L . .
AS with such changes in our data period. We see significant differences between sizes of good ASes

and those containing malicious IP addresses. While theanedi
Similarly, Figure 5 shows the total number of connectivitgize for a good AS is 512 IP addresses, the median for ASes
changes. Among good ASes, 75% of those with changes haith any malicious IP addresses at all and those with mone tha



1% of their IP addresses malicious is an order of magnitude AS Topology

larger, and the median for those that represented more thagymerous studies have focused on accurately determining
0.25% of a data set is yet another order of magnitude Iarg@;peS of AS relationships, including those by Di Battista
Similarly, while 67% of ASes without malicious IP addresse§ [16], Dimitropouloset al. [17], Gao [15], and Subrama-
have 1024 or fewer IP addresses, this is only 22% for thoggn et al. [18]. Where we deal with connections between
containing malicious IP addresses, and 1.5% for those h&fes we are most concerned just with if a malicious AS is
made up at least 0.25% of a data set. related to other malicious ones. Therefore to infer the type

This result is somewhat expected. The more addressesdpytionship, we use a simple algorithm similar to the one Ga
an AS, the more likely at least one will be compromiseyascripes as her basic algorithm.

However, the plot for those with more than 1% of their peyford et al. [19] examined BGP routing stability for
addresses marked as malicious closely follows the plot fgfe ASes of popular destinations on the Internet. They found
those with any malicious addresses at all. This is unexgeci@at most BGP instability was from unpopular destinations
because larger ASes would need more total IP addresses tQR§ that popular destinations had more stable routes. Work
malicious to end up in this categor@verall, it appears that py Feldmanret al. [20] identifies ASes which cause routing
larger ASes are more likely to contain malicious addresses panges. In our work, we find that ASes containing malicious
IP addresses have disproportionately high routing changes
C. Degree of AS Peering Other work deals with malicious activities in the BGP

We now look at the degree of each AS, which is the numbgyStem itself. One such activity is prefix hijacking, where a
of other ASes with which it directly connects. In Figure 7Prefix is stolen by advertising a false route. Several papers
we show the degrees of ASes containing or not containitfif!uding work by Zhanget al. [21] and many others, seek
blacklisted IPs. We see thaSes with malicious IP addressed® identify hijacking attempts. Zhangt al. also have work
are more likely to have a higher degreBoth have a median " defending against hijacking attempts [22]. Several rothe
degree between 1 and 2 indicating that a large portion of btStéms, such as SBGP [23] and soBGP [24], also prevent
are stub ASes. However, 99% of good ASes have a degredBfix hijacking. While we recognize the importance of miti-
10 or less, while 91% for ASes with at least one maliciol&2ting such malicious behaviors, we focus on maliciousshost
host have that degree. Further, only 65% for ASes with &fd their originating AS and AS behaviors, not attacks again
least 0.25% of the malicious IP addresses in a data set haBGP itself.
degree of 10 or less. In general, ASes harboring malicious
traffic appear to have good connectivity, which may affe@. Locating malicious behaviors

efforts to isolate these systems. Our work is directly motivated by the disconnections of

ASes belonging to the ISP Atrivo [1] and the Web hosting

100% provider McColo [2], [25] in 2008 by their upstream provider

L e

1 as well as the 2009 FTC-ordered shutdown of Pricewert [3].
L e e In all three cases, the networks were accused of large amount
Srowt £ -4 of botnet activity, malware hosting, and spamming. While
< N | these three attracted enough attention for high profileoacti
ﬁ: against them and coverage by much of the technology news
= 50% ; 1 media, we wanted to see to what extent malicious activity
‘—g 40% [f£- S Clustered together in other ASes which have not received so
E 30 [ ~J  much attention or drastic action.
S Some previous works attempt to locate malicious behavior
Asee oo ASes ——= at granularities other than ASes. In their study of spyware,
L ASes wi1% malicius IPs ----- [ Moshchuk et al. [26] find that certain categories of Web
00 Tt "?"'1"0'00 000 sites contain more spyware than others. Similarly, work by
Degree of AS (Number of Peering ASes) Provoset al. [27] finds that 67% of malware download sites

in drive-by downloads are hosted in a single country: China.
Fig. 7. Degrees of ASes containing or not containing malisitP addresses While there is insight to be gained by examination at these
in our blacklists. other granularities, we focus solely on the AS location of
malicious behavior in the paper.
Other work touches on AS locations of malicious behav-
V. RELATED WORK iors on the Internet. In a paper on spammers’ behaviors,
This work focuses on finding the ASes harboring maliciouRamachandraet al. [28] find that a small number of ASes
activity on the Internet, and investigating the behaviofs @re responsible for sending a large amount of spam, with 36%
and connections between those ASes. Accordingly, theactlabf all spam coming from just 20 ASes. Kongt al. [29]
work falls into two broad categories, work which examines A8xamined scam hosting infrastructure. Among their findings
topology, and work which attempts to characterize the looat was that for the spam campaigns they examined there was
of malicious behaviors. almost no overlap in the ASes of the spamming machines and



the ASes where the scam Web sites were hosted. However, regular resolutions from a large number of vantage points,

none of these papers has the AS locations of the behavior as it is impossible to be certain that the same IP address was

their main focus as we do, and none go on to examine BGP examined that was reported as malicious.

behaviors of those ASes identified. « DHCP/NAT Effects: Some networks may have a single
The most closely related work, that by Stone-Grags machine that is compromised and engaging in attacks

al. [30], analyzes ISP networks based on their degree of on the Internet, but due to DHCP leasing, it may have

involvement in malicious activity. The authors use one of ou  have a larger number of IP addresses from which it has

blacklists, from PhishTank, as well as other data sourees, i  attacked. In our analysis, this machine may be counted

cluding botnet communication and drive-by-download afstjv multiple times, causing the associated AS to appear more
for their analysis. Our work augments this work by analyzing malicious. Likewise, NAT allows multiple machines to

an additional data sources of malicious activity and exargin share the same address. Accordingly, multiple malicious

the BGP behavior of the ASes reported as malicious. machines would appear to be only a single compromised

machine if they were translated to the same address.

VI. DIsScuUssION Further, a mixture of malicious and benign machines may

be labeled as malicious and multiple legitimate machines
would be recorded only as a single legitimate machine.
Differences in deployment strategies can greatly amplify
or dampen these effects: a short DHCP lease time with
a mandatory IP change at lease expiration would have
o . much greater impact than a DHCP environment with long
A. Limitations of Blacklisting lease times and little IP address churn. Accordingly some
In this work, we used blacklists as ground truth for whether  networks may be disproportionately penalized.
a machine was engaged in malicious activity or not. However,, Hijacked IP Space: Attackers have used IP prefix hi-
this is not the purpose for which these blacklists were cre- jacking to acquire control over legitimate address space,

In this Section, we describe the inherent limitations ohgsi
blacklists for research of similar nature to ours and déescri
alternative approaches that could be used. We then discuss
how this research could be used in practice.

ated: the blacklists are designed to allow other orgarirati use the addresses to launch attacks, then release the
to prevent possibly malicious traffic from arriving at their  route [33]. If these attacks were reported, the AS whose
infrastructure. This is different from our goal of providim prefix was hijacked would be penalized, rather than the

real-time feed of malicious activity that can be used to ssse  actual perpetrators.
an AS. As a result, there are a number of factors that can, Toxic Assets: With a decreasing availability of IPv4
affect these results: address space, IP ranges that were previously assigned but
o Blacklist Administration: Some blacklists use an “au- are now vacant are being reused, causing innocent parties
tomatic addition/manual deletion” system, automatically  to obtain addresses that have been reported as malicious.
blacklisting any reported IP addresses, with network Such innocent parties may be incorrectly identified as
administrators being required to manually remove entries malicious through our research.
from the blacklists. These administrators may not be
aware of the blacklisting or simply choose not to remov@. Alternative Data
their machines from the list even after they are reported. With the limitations of using blacklists for assessing AS-ma
In practice, these lists may see many additions with feliciousness, we explore alternative data that could beyardl
removals, causing entries from long-ago attacks to remafhis attack history data must be collected by the destinatio
in the lists even after the termination of the maliciousr by network routing infrastructure.
activity and penalizing clean machines. Some destinations have banded together to share theik attac
« Reporting Bias: Some destinations may report attackimformation to quickly detect industry-wide attacks. A nioen
to blacklists, causing the attacking systems to be listeof organizations have established Information Sharing and
Other destinations may choose not to report attacks. Analysis Centers (ISACs) to share information about agack
cordingly, the reporting may be biased, causing systertieey encounter [34]. Some of these ISACs operate darknets,
and networks attacking the destinations that report to be data collection operations on unused IP address space, to
identified while others may attack freely without beingletect attacks being randomly targeted and operate hotseypo
listed. This may introduce biases in the conclusions drawm learn more about attacks. These organizations may have
through our research. live data feeds that can be used to detect systems engaged
« DNS Resolutions: Some blacklists provide a list of IPin scanning or attacks. However, this data will have repgrti
addresses while others provide host names. To obtairiases: 1) these institutions regard security as a critiead
consistent data set, these host names must be resolard do not represent the Internet as a whole and 2) only some
to their IP addresses. However, the original reporter aftacks may appear in the data, depending on the collection
the IP address may perform the DNS resolution argystems they use. Accordingly, attackers that avoid these
obtain different IP addresses from what is resolved lateystems, or attackers that use techniques that are noy easil
by researchers. This can be due to temporal changesautomatically detected, would not appear in these data sets
addresses, such as those present in fast flux [31], [32]Network and host-based intrusion detection services may
or responses tailored to the resolver’s location. Even witlollect and aggregate data on attacks and provide them to the
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security service vendors to analyze. These vendors cayznalimalicious AS since doing so would be more likely to service
sources of the attack traffic and perform analysis similar tolegitimate user. Maliciousness scores could also be used i
our own. Unfortunately, these vendors must typically aaligf spam filtering; however, this cannot be a sole discriminator
guard this information as it may expose sensitive infororati since there may be legitimate machines in many highly mali-
about their client organizations. This limits the abilitiitbird- cious networks.
party researchers to analyze the data.

Other data can be captured by leveraging and observing the VIl. CONCLUSION

infrastructure used by attackers. In the work by Stone-§&gbs ) )

al. [30], the authors observed botnet command and control!" this study, we examined whether some networks are safe

channels, allowing them to see members of the botnets in re3rbors for malicious activity. We found that several ASeeeh

time. Such work can facilitate observations about infecda- high concentrations of malicious IP addresses while otiegrs

ration and cleansing efforts, which is challenging withdita TeSent disproportionately higher malicious activity thamir

lists. However, attackers regularly change and evolver th&duivalently sized peers. This shows that while botnets are

command and control infrastructure, requiring reseascher commonly being used to launch attacks, malicious hosts may

continually infiltrate new attacker infrastructure. Fanththis Still be clumped by network providers. In spite of these Hssu

analysis introduces bias: researchers can only observetot(raffic cannot simply be declared malicious based solely on

based attacks and only attacks in which they have identfied S originating AS even for ASes with the high degree of

command and control infrastructure. Accordingly, resears Mmaliciousness, as this would have extensive collaterabgem

risk missing smaller botnets which may be more regiorﬁ)_enallzmg legitimate traffic as well. However, identifginf

focused. traffic is coming from ASes known to be malicious can be
While there are a few possible alternative routes for obiS€d as one component to help make such a decision.

taining attack data, there is no perfect data set for arglysi OUr analysis can be used to help increase ISP accountability

Without a system for widespread, systematic reporting 8nd can become a mechanism to combat malicious activity. By

attacks, it will be impossible to obtain unbiased data t@oviding a comparison with equivalently-sized networks, -

analyze for attacks. However, such a system could be creaf8@ highlight the ASes most in need of attention and which

by regulators to evaluate ISP networks, allowing compﬁain‘f"omd only of_fer dlmlmshmg returns. This information can

to be filed. Industry self-regulation strategies, such aseh &lSO be used in peering agreements to place pressure on ISPs

used in organizations like the Better Business Bureau,dcodP respond to malicious activity.

also create a system for reporting. However, while creating

such a production system, researchers would have to create ACKNOWLEDGMENTS
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