

Overview

- There are two MOLGEN planners
 - Friedland, 1979
 - Stefik, 1980
- Assists molecular geneticists in developing plans for laboratory experiments
- Meant more as an experiment in planning systems than an actual tool

Primary Concepts

- · Hierarchical Planning
- Constraint Posting
- Least Commitment Planning
- Frame Based Objects
- Layered Control Structure

Constraint Posting

- Constraints represent relationships between plan variables
- Variables may be either operators or objects
- Constraints may exist within plans as well as between plans
- When new plans are refined, existing constraints are inherited

Benefits of Constraint Posting

- · Elimination of invalid possibilities
 - If Restaurant only serves Italian food, the only possible values of Food are Italian foods
- Partial description of objects
- Expression of relationships between plan variables

Least Commitment Planning

- Choices about refinement of plans and variables are deferred as long as possible
- When decisions are made, the valid options for other variables decrease
- · Further constraints may be discovered
- Choices made under least commitment are never "wrong"

Guessing

- When no "safe" refinements can be made the value of a variable must be heuristically guessed
- · Guessing can lead to backtracking
 - Backtracking need only be performed on guessed variables (and refinements or definitions based on those variables)
- Hopefully, information gained from guessing leads to other "safe" refinements

Frame Based Objects

- Objects (including operators) in MOLGEN are all created from a generic object of its type
- These generic objects contain standard information about that object type as well as possibly relationships to more abstract parent objects
- Information in specific object instances may change throughout the course of an experiment

Conclusion

- MOLGEN is a well thought out planning tool, it uses combines least-commitment and heuristic planning well
- MOLGEN relies heavily on domain specific knowledge to guide the process
- MOLGEN was never meant to be an actual laboratory planning tool
 - The area was far too complex
 - Experiments often call for expert knowledge midway through