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GHAPTER SEVEN

Artificial Intelligence for Design

Thomas F. Stahovich

INTRODUCTION

Artificial Intelligence (Al) is the study of knowledge representations and inference
mechanisms necessary for reasoning and problem solving." Al encompasses a wide
variety of topics such as logic, planning, machine vision, and natural language pro-
cessing. This chapter focuses on those topics that are the most useful for design syn-
thesis: search, knowledge-based systems, machine learning, and qualitative physical
reasoning.

This chapter is divided into four main sections, one for each of these topics. Each
section discusses the theory behind the techniques, provides examples of their appli-
cation to synthesis, and summarizes the current understanding about their usefulness.
To the extent possible, the sections are independent of one another, and thus can be
read in any order without loss of continuity. This chapter draws examples primarily
from mechanical engineering; however, the techniques are suitable for many kinds
of design problems. The earlier sections describe more mature technologies, whereas
the later sections describe technologies with much of the potential left to be explored.
The chapter concludes with thoughts about future directions.

SEARCH

Search is one of the oldest AT techniques and was the basis of much of the early work
in Al For example, the Logic Theorist of Newell and Simon (Newell, Simon, and
Shaw, 1963) which was one of the first implemented Al systems, used search to prove
theorems in propositional calculus (logic). Search has continued to be an important
Al'tool and has contributed to a number of significant accomplishments. For example,
Deep Blue, a chess-playing computer program based on search, recently defeated a
grand master (Hamilton and Garber, 1997).

In some appiications, search is the primary problem-solving tool. However, even
when it is not, search often still has an important role to play. For example, in

! Philosophers and scientists have long struggled to define what constitutes both (human) intelligence and
artificial intelligence. The definition used here takes the pragmatic view of Al as a set of probiem-solving
tools. Russell and Norvig (1994) fists several alternative definitions of AL
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rule-based systems (second section), search can be used to implement rule chaining;
in machine learning (third section), it is used to find the best hypothesis to explain a
set of observations; and in qualitative physical reasoning (fourth section), it is used
to find a consistent set of values for the state variables.

This section provides an overview of common search techniques and describes
their application to design synthesis. It also describes the key issues in search-based
design, including the problem of exponential explosion and the benefits of abstrac-
tion. Note that this section covers only arepresentative sampling of search techniques
to illustrate the key issues involved. For a more detailed discussion of individual
algorithms, refer to Korf (1988) or any 1ntr0ductory Al text such as that by Winston
(1992} or by Russell and Norvig (1994).

SEARCH TECHNIQUES

Path-Finding Problems. A search problem is characterized by a “search space”
or “problem space” consisting of states and operators. States are possible solutions or
possible partial solutions to the problem. Operators map from one state to another.
A particular instance of a search problem is characterized by the initial and goal
states, and the search task is to identify a sequence of operators that map from one
to the other.

For some problems the goal state is known, and the task is to find a path (sequence
of operators) from the initial state to the known goal state. An example is finding an
interference-free path by which tubing can be routed from one hydraulic component
to another. In this case the location of one of the hydraulic components is the initial
search state and the location of the other is the goal state. For many search problems,
however, the goal state is not known explicitly, but rather is described implicitly by
a test. An example is searching for a layout for a set of objects that will allow them
to fit inside a small container (the packing problem). In this case the final state is
defined implicitly by a test that determines if the objects fit without interference.

A search space is typically represented as a tree. The nodes in the tree are the
search states and the arcs connecting them are the operators. The root of a search tree
is the initial state of the search problem. The next level deeper in the tree consists of
states that can be reached by applying a single legal operator to the root. Similarly, the
nodes n levels deep in the tree are the states that can be reached by applying legal op-
erators to the states at level n—1. Figure 7.1 shows a generic example of a search tree.

The size of a search space is characterized by the branching factor () and the
depth of the tree (d). The branching factor is the average number of child nodes that
can be reached by applying the legal operators to a node. The depth is the distance ~
number of nodes - from the root to a solution. A good estimate of the total size of
the search space is %, and thus the time required to exhaustively search the tree is
exponential in the tree depth.

Search techniques differ in terms of the order in which they visit the nodes in
the search tree. The remainder of this section considers three classes of techniques:
brute-force, heuristically informed, and stochastic.

Brute-force techniques search the tree systematically, w1thout usmg any knowl-
edge of the search space. The two classic techniques are breadth-first and depth-first
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Figure 7.1. A search tree with the branch-
ing factor and depth both equal to three,

O

search. Breadth-first search visits all of nodes at one level of the tree before proceed-
ing to the next level. This requires exponential storage and exponential time; both are
proportional to 9. Depth-first search attempts to extend a single line of reasoning
from the root all the way to a solution. Whereas breadth-first search examines the
tree row by row, depth-first search examines it branch by branch. Depth-first search
selects one child of the root, then one child of that child, and so on, until a solution is
found or a leaf of the tree is reached. In the latter case, the search backtracks to the
last decision point and selects a different child node. Depth-first search still requires
exponential time because on average it visits the same nodes as breadth-first search,
but it simply does so in a different order. The benefit of depth-first search is that the
storage requirements are only linear in the depth of the tree rather than exponential
as in the case of breadth-first search.

If the search tree is infinitely deep, depth-first search may not terminate. For
example, if the first branch does not contain the solution and the tree is infinite, the
approach will continue along that branch forever. Breadth-first search avoids this
problem, but at the expense of exponential storage. Depth-first iteratively deepening
(DFID) is a brute-force search technique that avoids both of these problems (Korf,
1985). In DFID, thé tree is searched as in depth-first search, except that each branch
is terminated when a preselected cutoff depth is reached. Initially, a small cutoff
depth is selected! If no solution is found, the cutoff depth is increased and the search
is repeated. This process continues in this fashion until a solution is found. Although
DFID ends up visiting some nodes over and over again, it can be shown that this
does not have a significant adverse affect on performance.

Because search is exponentially expensive, there will always be problems that
are too large to solve with brute-force methods, even when the fastest computers
are used. Imagine, for example, that the task is to synthesize a device by brute-force
combination of components selected from a library. If there were only 10 different
kinds of components in the library and we consider devices composed of only 20
components, the size of the search space would be 10%. 1t is clearly not feasible to
search a space this large by brute force. The remedy is to use problem-specific know-
ledge to guide the search so as to avoid unnecessarily searching large portions of the
space. Search methods that do this are called heuristically informed. They use a
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heuristic measure of the remaining distance to the goal, or some other measure of
quality, to decided which nodes in the search tree to visit first. For example, hill
climbing expands the best child of the root node, the best child of that node, and
so on until a solution is reached. In this sense, hill climbing is analogous to gradient
descent in numerical optimization.

Heuristics are often quite effective at reducing the amount of search required to
find a solution. Additionally, if the heuristics are known to be an underestimate of
the remaining distance to the goal, they can provide a guarantee that the solution is
optimal.? For example in A* search, each unexpanded node is assigned a cost equal
to the sum of the cost of the solution so far plus an underestimate of the remaining
cost of reaching the goal (Hart, Nillson, and Raphael, 1968). A* expands all nodes
whose cost is less than the known cost of the current best solution. When all of the
nodes yet to be expanded have a cost greater than the current best solution, that
solution is guaranteed to be optimal.

Another way to avoid the exponential cost of search is through abstraction: In-
stead of directly solving a complex problem, solve a simpler abstraction of it and
then fill in the missing details with a second problem-solving effort. For example, in
mechanical design, it is often easier to first solve a problem at the functional level and
then map each of the functions to an embodiment. (Several examples of this are dis-
cussed following, under Search Applications.) Because there are often multiple ways
to implement a given function, the search space for functional design is much smaller
than for embodiment design. Although abstraction reduces the cost of finding a
solution, it may sacrifice optimality: even if each step is solved optimally, there is no
guarantee that the final solution is globally optimal.

If heuristics and abstractions are unable to reduce the search space to a tractable
size, stochastic search methods are useful. Rather than searching systematically, these
methods stochastically sample a large number of points distributed throughout the
search space. By pursuing many diverse solutions, these approaches avoid being
trapped at local maxima (or minima}. Common stochastic methods include simulated
annealing and genetic algorithms (Chapter 8).

Constraint Satisfaction. The discussion thus far has focused on search problems
that can be characterized as path-finding problems because the task is to find a path
(sequence of operators) from the initial search state to the goal state. Another major
class of search problems is constraint-satisfaction problems (CSPs). These problems
are characterized m terms of a set of variables, a set of possible values for each
variable, and a set of constraints on the variables. The task is to select a value for
each variable such that the constraints are satisfied. A common example is map
coloring in which the goal is to assign a color - selected from a small set of colors —
to each country on the map such that no adjacent countries have the same color.

Constraint satisfaction problems can be solved with the brute-force approaches
used for path-finding problems, but there are better techniques. The simplest of these
is backtracking. This approach begins by assigning an order to the variables. Then,
similar to depth-first search, values are assigned to the variables, in order, one at a

2 There are other optimal search techniques such as exhaustive search and branch-and-bound search that
do not rely on heuristics, but these approaches are less efficient.
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time. After each assignment, the constraints are evaluated, and if any are violated, the
approach backtracks to the first variable for which there are other choices. Another
choice is selected and the method continues on in this fashion until either a consistent
solution is found or all combinations of assignments have been explored.

Backtracking attempts to resolve constraint violations by returning to the most
recent decision point. Often, however, the violation is a result of a much earlier
decision and a substantial amount of backiracking is required to resolve the con-
flict. Dependency-directed backtracking (Stallman and Sussman, 1976) attempts to
tdentify which variable is actually responsible for the conflict so that the solution
process can directly backtrack to that variable. Dependency-directed backtracking
18 thus typically far more efficient than plain backtracking; although in the worst case,
both are exponentially expensive.

An even more efficient way to solve constraint satisfaction problems is to pre-
process the search space and eliminate any local inconsistencies before searching for
a globally consistent solution. The techniques for doing this are called arc consis-
tency (Waltz, 1975; Mackworth, 1977). Consider a pair of variables x and y that are
related by a constraint. All those values of x that do not have a corresponding legal
value in y can be pruned, and vice versa. For example, if x and y are constrained
to be equal, then the possible values for x and y can be reduced to the intersection
of the initial sets of possible values. To solve a problem, arc consistency is repeat-
edly applied to each of the constraints until no more variable values can be elimi-
nated. Then, either a backtracking or brute-force approach is used to find a globally
consistent solution from the choices remaining. Often arc consistency results in an
enormous reduction in the search space so that comparatively little search has to be
performed.

SEARCH APPLICATIONS

This section describes synthesis systems that rely on search as the primary problem-
solving method.? Search has been used for three main types of synthesis problems:
(1) synthesis as the combination of standard components, (2) synthesis as repair,
that is, synthesis as the application of modification operators to transform an initial
design into a *wqirking design, and (3) synthesis as the selection of parameter values
for a parametric design. This section provides examples of each of these three types
of problems. :

Synthesis as Combination. Ulrich (1988) uses search combined with the bond
graph representation to synthesize single-input, single-output devices, Bond graphs
are used to generate schematic designs that are then mapped to implementations.
Bond graphs provide a form of abstraction allowing problems to be solved at the
functional level before considering embodiments. Bond graphs are a modeling
formalism for describing devices composed of networks of lumped-parameter

3 Many of the systems described later in this chapter also employ search in one form or another. For
example, the CADET system described at the beginning of the third section uses search to synthesize
a design by selecting a sequence of cases from a case base. Similarly, the EearnIT II system described
later in that section uses a form of hill climbing to construct decision trees.
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clements including generalized capacitors, resistors, and inductors (Karnopp and
Rosenberg, 1975). These elements can be mechanical, electrical, and fluidic. Bond
graphs can also model elements such as transformers and gyrators that convert power
in one medium to power in another.

The synthesis problem is specified in terms of two bond graph chunks, one de-
scribing the input to the device, the other describing the output. Each chunk is asso-
ciated with a variable. The designer specifies the design requirements in terms of a
desired relationship between the input and output variables. Schematic designs are
generated by using search: Bond graph elements are chained together until the input
chunk is connected to the output chunk. To limit the search, restrictions are placed
on the number of bond graph elements a solution can contain. The initial schematic
solutions are then evaluated to determine if they provide the desired relationship
between the input and output variables. If not, debugging rules are used to modify
the bond graph. |

Each of the successfully debugged bond graphs is mapped to an implementation
by using a library of embodiments for the different types of bond graph elements.
The resulting designs are inefficient because each element is mapped to its own
embodiment. To produce more efficient designs, a function-sharing procedure is
used. This procedure eliminates a component from the embodiment and then uses
a set of rules to identify other components that could be modified to provide the
missing functionality.

Figure 7.2 shows an example concerning the design of a device for measuring the
rate of change of pressure. The input is pressure and the output is a linear displace-
ment that is required to be proportional to the time rate of change of the input. The
bottom of the figure shows the final schematic design and an initial implementation.
When the function-sharing procedure is applied, the fluid resistance in the bottom
branch of the circuit is eliminated and replaced by using an undersized piston that
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allows leakage.
Williams’ IBIS system (Williams, 1990) synthesizes devices by searching through
a network of qualitative interactions. The desired behavior is specified as a desired
relationship between fwo or more quantities. For example, the sign of the derivative
of one quantity may be specified to be equal to the sign of the difference between
two other quantities (a fluid level regulator). IBIS searches through its network of
mteractions to identify a set of interactions that could connect the specified quantities
and achieve the desired relationships between them. Once it has found such a set,
IBIS uses a library to map each interaction to a structure that implements it.
Subramanian and Wang (1993, 1995) use search to synthesize mechanisms that
transform specified input motions, such as continuous rotation, into specified output
motions, such as translational oscillation. They first find a sequence of primitive mech-
anisms that can achieve the desired transformation. They then produce a detailed
design by selecting implementations for the primitive mechanisms from a library as
shown in Figure 7.3. Their search algorithm is recursive and works backward from
the specified output motion toward the specified input motion. The algorithm be-
gins by identifying all primitive mechanisms that could produce the desired output
and selects one at random. If the input of this primitive mechanism is compatible
with the specified device input motion, the process terminates. If not, the input of
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Figure 7.2. A schematic synthesis préblem from Ulrich (1988): () specification and (b} solution.

this primitive mechanism is treated as if it were the specified device output and the
algorithm recurses. In this fashion, the approach is able to chain together components
to construct single-input, single-output (SISO) mechanisms.

The approach can also be used to design single-input, multipie-output (SIMO)
devices. SIMO devices are initially designed as multiple SISO devices operating in
parallel. Then, if any of the SISO solutions have primitive mechanisms in common,
those solutions are merged so that the common mechanisms are shared.

Synthesis as Repair. Joskowicz and Addanki (1988) use search to design kine-
matic pairs (Figﬁre 7.4). The desired behavior of a kinematic pair is described as a
desired configuration space (C space). The C space represents the configurations in
which the pair of parts interpenetrates (blocked space), the configurations in which
they do not touch (free space), and the configurations in which they just touch (bound-
aries between free and blocked space). Only the latter two types of configurations
are legal kinematic states.

Each of the two interacting parts is described as a two-dimensional contour com-
posed of line and arc segments. They begin with an initial contour for each part. They
compute the corresponding C space and compare it to the desired C space. If the
two do not match, the part contours must be modified. If the actual C space contains
a boundary not found in the desired C space, one or more of the contour segments
responsible for that boundary must be removed. If, in contrast, the actual C space
is lacking boundaries contained in the desired C space, then one or more segments
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Figure 7.3. Mechanism synthesis using search from Subramanian and Wang (1993). Here ©; and Qo are
the specified input and cutput motions; R; are primitive mechanisms each of which has multiple possible
embodiments. The last row shows examples of embodiments.
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must be added to the contours of the parts. A table of elementary interactions is used
to determine which kinds of segments should be added to produce a specific kind of
boundary in C space.

The design procedure is a form of backtracking search. At any point in the de-
sign process there may be multiple potentially useful modifications. One of these is
selected and applied. If this causes any undesired side effects, the search backtracks
and another choice is selected. The search process continues in this fashion until the
desired C space is achieved.

Shea, Cagan, and Fenves (1997) use simulated annealing (a form of stochastic
search; see Chapter 8) and shape grammars (Chapters 2 and 3) to design trusses.
Their task is to design a truss of minimum weight subject to constraints imposed by
geometric obstacles and stress considerations. Additionally, the number of different
sizes (cross sections) of bars that can be used in a single design is constrained to
reduce manufacturing cost. The shape grammar specifies legal modifications to the
truss, including adding and removing bars, increasing and decreasing the size of
individual bars, and moving junction points. Simulated annealing selects and applies
modification rules to decrease the weight of the structure while attempting to satisfy
the constraints.

Synthesis as Parameter Selection. Orelup and Dixon’s Dominic II system uses
hill climbing to solve parametric design problems (Orelup and Dixon, 1987). A de-
sign problem is described by a set of design variables that the designer can directly
adjust and a set of performance parameters that evaluate the quality of the design.
The designer specifies the constraints on the variables and the range of acceptable
values (good, fair, and poor) for the performance parameters. Starting from some
initial design state, Dominic II uses hill climbing to adjust the variables and improve
the performance parameters. The program monitors its own performance and detects
when the search becomes unproductive. For example, the search may cycle between
design states or it may be unable to make changes due to an active constraint. The pro-
gram selects new search strategies when these kinds of situations occur. For example,
the program may allow the search to (temporarily) move to states with lower perfor-
mance or it may change two variables at once in order to satisfy an active constraint.

CURRENT UNDERSTANDING

Synthesis as the combination of standard components has been extensively explored.
This approach is typically used to assemble components that have well-defined input
and output ports such as motors (current in, rotation out), racks and pinions (rotation
in, translation out), gear reducers (rotation in and out), hydraulic cylinders (pressure
in, translation out), and so on. There are several advantages to using these types of
components. First, they provide an easy means of ensuring compatibility between
components: two components are compatible if their ports are of the same type.
This compatibility test often provides a significant reduction in the size of the search
space because partial solutions violating the test can be pruned without need of
further exploration. Second, these types of components have composable behaviors:
The behavioral model of a component is independent of the components to which
it is attached. Thus the model of a complete device can be assembled by linking
together predefined component models. Third, for these types of devices, the desired
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function can be conveniently described as a desired qualitative relationship between
scalar parameters. For example, the desired function of a pressure gauge is for a
displacement to be proportional to a pressure.

‘The main limitation of synthesis as combination, as the name suggests, is com-
binatorial explosion: the size of the search space is n™ where n is the number of
available components and m is the maximum number of components allowed in the
design. The exponential problem size often prohibits brute-force search. Abstraction
is commonly used to help manage problem size. For example, the systems described
above use bond graphs, abstract mechanisms, and qualitative interactions to synthe-
size an abstract functional design. This functional sclution is then used as the starting
point for embodiment design. This two-step process replaces one large exponential
with the sum of two much smaller exponentials. Although abstraction is often quite
effective at reducing problem size, it is often still necessary to use heuristics to guide
the search process.

Synthesis by repair is another common application of search to synthesis. This
approach also suffers from combinatorial explosion, however, heuristics are often
available in the form of explicit debugging knowledge. For example, Joskowicz and
Addanki (1988) repair shape by using explicit knowledge of which modifications are
likely to produce particular boundaries in C space.

Heuristically informed search techniques such as hill climbing have been used for
selecting parameter values in parametric design. However, numerical optimization
techniques often perform better for this application. One of the deficiencies of hill
climbing is that the solution can get trapped at a local maxima before reaching the
solution. Stochastic optimization techniques (Chapter 8) are particularly good at
avoiding local maxima.

KNOWLEDGE-BASED SYSTEMS

Knowledge-based systems (KBSs) have been widely used in design. These types of
computer systems are often called expert systems because they solve problems by
using knowledge obtained from experts and because they can often achieve expert-
level performance. A knowledge-based system consists of a knowledge base and
a compatible inference engine. There are a variety of different knowledge repre-
sentations for constructing knowledge bases, and thus a variety of different infer-
ence engines. The representations differ in the types of inferences they support and
how they describe facts about the world. Davis, Shrobe, and Szolovits (1993) pro-
vide a comprehensive analysis of existing knowledge representation technologies. In
this section, we discuss the technologies most commonly used in design: rules and
frames.

Rule-based systems describe knowledge in the form of production rules (Davis,
Buchanan, and Shortliffe, 1977; Davis and Lenat, 1982; Hayes-Roth, Waterman,
and L.enat, 1983; Buchanan and Shortliffe, 1984; Dym and Levitt, 1991). A rule is
composed of an “if” part, called an antecedent, and a “then” part, called a conse-
quent. The antecedent is a set of patterns or clauses that indicate when the rule is
applicable. The consequent describes the deductions to be made or the actions to
be taken when the rule is executed. Figure 7.5 shows an example of a rule from R1,
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w The most current active context is putting unibus medules in the

backplanes in socme box
» It has been determined which module to try to putin a backplane
a That medule is a multiplexer terminal interface
= It has not been associated with panel space
» The type and number of backplane slots it requires are known

m There are least that many slots available in a backplane of the

appropriate type

= The current unibus load on that backplane is known

The position of the backplane in the box is known
THEN:

= Enter the context of verifying panel space for a multiplexer

Figure 7.5. A rule for configuring computer systems from R1 (McDermott, 1981).

a rule-based system that translates a customer’s requirements for a computer system
into a detailed configuration of components.

Individual rules are small chunks of knowledge. Solving a complete problem
typically requires chaining together multiple rules with a rule-chaining engine. In
forward-chaining systems, the rule antecedents are matched against the known facts
to determine which rules are applicable. If more than one rule applies, a conflict
resolution strategy is used to determine which should be executed first. Common
strategies include picking the most specific rule (the one with the most clauses in the
antecedent) or picking the rule whose antecedent is satisfied by the most recently
deduced facts, The rule chainer continues to execute all applicable rules until there
are none remaining. Note that in contrast to traditional procedural programs, rule-
based systems do not provide a means for explicitly controlling the order of the
program’s execution. The rule chainer, rather than the system designer, determines
the order in which the rules are used.

Frame-based systems describe knowledge in terms of taxonomic hierarchies
(Bobrow and Winograd, 1977; Brachman and Schmoze, 1985).* A frame can be a
“class frame” describing an entire class of objects or an “instance frame” describing
a particular instance of a class. For example, one frame could represent the entire class
of trucks, whereas another could represent a particular red truck (i.e., an instance).
Frames contain slots for describing the attributes of a class or instance. For example,
a frame describing a truck may have a slot for the cargo capacity. Class frames are

4 Prames grew out of work in semantic networks. See Brachman (1979).
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organized in a superclass—subclass hierarchy in which subclasses inherit attributes
from their superclasses. Inferences are made about objects (instance frames) by
knowing the classes to which they belong.

Rules and frames are often combined to form a hybrid representation (Stefik
et al., 1983; Kehler and Clemenson, 1984; Fikes and Kehler, 1985). This is accom-
plished by associating sets of rules with individual frames. The frame taxonomies
serve to partition the rules and define their scopes of application. This helps the sys-
tem designer control when and for what purposes different rules are used. Frames
also provide a language for describing the objects referred to in the rules. Addi-
tionally, frames provide a means for making certain inferences about objects, based
on class membership, without need for explicit rules. This hybrid representation is
perhaps the most common knowledge representation for design tools.

KNOWLEDGE-BASED SYSTEMS APPLICATIONS

The origins of knowledge-based systems are generally traced to the DENDRAL
system (Feigenbaum, Buchanan, and Lederberg, 1971), which used heuristic knowl-
edge to interpret mass-spectroscopy data and infer the structure of an unknown
compound. The MY CIN system (Shortliffe, 1974; Davis et al., 1977), which used pro-
duction rules to select antibiotic therapies for bacteremia, was the first rule-based
system with a separable knowledge base and inference engine. MYCIN’s inference
engine, called EMYCIN (van Melle, Shortliffe, and Buchanan, 1984), was used to
implement a variety of other rule-based systems including SACON, a system that
assisted an analyst in the use of a complicated finite-element analysis tool (Bennett
and Englemore, 1984). '

Knowledge-based systems have been used widely in design. For example, they
have been used to design computer systems (McDermott, 1981), V-belts {(Dixon,
Simmons, and Cohen, 1984), VLSI devices (Subrahmanyam, 1986), pneumatic cylin-
ders (Brown and Chandrasekaran, 1986), paper transport systems (Mittal and Dym,
1986), dwell mechanisms (Kota et al., 1987; Rosen, Riley, and Erdman, 1991), and
electrical transformers (Garrett and Jain, 1988). Here we review two of these sys-
tems to illustrate the issues involved in building knowledge-based systems for
design.

R1. The R1 systems (also called XCON) is one of the best known rule-based
systems (McDermott, 1981; Bachant and McDermott, 1984; van de Brug, Brachant,
and McDermott, 1986; Barker and O’Connor, 1989). It was developed by Digital
Equipment Corporation to configure built-to-order computer systems. R1 took as
mput a list of computer components that a customer had ordered and produced as
output a set of diagrams showing how those components should be assembled. The
program also determined what other components were needed to complete the order
and produce a functional computer.

R1 decomposed the configuration task into a set of loosely coupled, temporally
ordered subtasks. The program imposed a partial order on the set of components to
be configured, such that if the components were configured in that order they could
be configured without need of backtracking. The program determined the partial
ordering dynamically, based on the characteristics of the problem at hand.
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R1 had a knowledge-base of approximately 10,000 rules and a database of ap-
proximately 30,000 computer components. Figure 7.5 shows a typical rule. The rules
were placed into groups on the basis of the subtasks to which they were relevant.
This allowed each rule to presuppose certain things about the current state of the
configuration without need of explicit clauses in the antecedents. In performing a
subtask, the program applied all applicable rules relevant to the subtask. When mul-
tiple rules were applicable, the program used generic conflict resolution strate gies to
determine which to apply first. When all of the applicable rules had been used, the
subtask was completed and no additional rules were needed to verify success.

In contrast to traditional procedural software, the R1 system required a substan-
tial amount of ongoing maintenance. As a result of new product releases and new
configuration techniques, 40% of R1’s rules changed each year. Because of the large
number of rules in R1’s rule base, adding new rules presented a significant tech-
nical challenge. The main difficultly was in bounding the potential relevance of a
piece of knowledge and controlling which piece to apply when more than one was
relevant. To overcome these difficulties, R1’s developers created the Rime problem-
solving approach (van de Brug et al., 1986). Rime defines six different roles that a
rule could serve. These included proposing which configuration operator to apply,
rejecting clearly inferior operators, selecting the best of the remaining operators,
applying a selected operator, recognizing success, and recognizing failure. By pro-
viding the programmer with a precise way to specify the role of any new piece of
knowledge, Rime greatly simplified the task of maintaining R1’s large scale, evolving
rule base.

The R1 system was used at Digital Equipment on a daily basis for over a decade.
The program was used to configure hundreds of thousands of computer systems
and was estimated to have saved the company $40 million annually (Barker and
O’Connor, 1989).

PRIDE. PRIDE is a knowledge-based system for designing paper transport sys-
tems in copy machines (Mittal and Dym, 1986). A design problem is described to the
system in terms of the required locations of the paper entrance and exit, the proper-
ties of the paper to be used, the timing requirements, the desired entrance and exit
speeds, and so on. The program specifies a design solution in terms of the number and
locations of the pinch rolls, the materials for the rolls, the values of various geometric
parameters, and the like. ,

In PRIDE, the plan for designing a transport system is expressed as a hierarchy
of design goals that decompose the design process into simpler steps. To begin a new
design, the top-level goal of designing a paper transport is instantiated. This, in turn,
results in the instantiation of subgoals representing subproblems, such as deciding
how many roll stations are needed and where they should be located. Figure 7.6
shows a snapshot of the goals that exist when a new design has begun.

Each goal is an autonomous specialist responsible for designing some subset of
the design parameters. A goal contains all of the alternative ways or “methods”
for making a decision about the values of the goal’s design parameters. There are
a variety of different kinds of methods: A method can be a “design generator”
that explicitly chooses parameter values; a method can be a set of production rules
whose consequents are themselves methods; and a method can be a new set of goals.
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Figure 7.6. A snapshot of the goals that exist when PRIDE (Mittal and Dym, 1986) begins a new paper
transport design problem.

The latter type of method is the mechanism by which the program iraverses the
hierarchical design plan.

Each goal contains a list of constraints that verify that the design is satisfactory. If
a constraint is violated, PRIDE uses a form of dependency-directed backtracking to
try to resolve the conflict. The violated constraint itself can direct the backtracking
by sending advice to the solver. This advice is provided to the system by an expert
and is explicitly included in the representation of the constraints.

The PRIDE system is used daily by a copy machine manufacturer for performing
feasibility studies of new copier designs. The program performs competently and can
do in 30 minutes what previously took weeks (Mittal and Dym, 1986; Dym, 1994).

CURRENT UNDERSTANDING

As knowledge-based systems have been extensively used, a number of specialized
development techniques have emerged. These have been documented in a vari-
ety of sources, including Davis and Lenat (1982), Hayes-Roth et al. (1983), and
Buchanan and Shortliffe (1984). These techniques include specialized software engi-
neering techniques and methods for obtaining knowledge from experts (knowledge
engineering).
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A significant part of design knowledge is about procedure, that is, what should be
done and when. However, rule-based systems were intended to represent declarative
rather than procedural knowledge (Davis, 1982). Thus, special efforts must be taken
to express the latter. Recall that ordinarily the rule chainer determines which rules
are used first. R1 was able to represent procedural knowledge by associating rules
with subtasks. Special rules were used to select which subtask to try next. PRIDE
used frames to explicitly represent the hierarchy of subgoals to be achieved. Different
sets of rules were associated with different frames, thus ensuring that the rules were
used only at the proper time.

R1 was able to solve problems without iteration or backtracking. This was pri-
marily due to the nature of the configuration task. Most design problems cannot be
solved in this linear fashion, but rather some amount of iteration is usually necessary.
The generate-test-debug approach used by AIRCYL (Brown and Chandrasekaran,
1986) and PRIDE (Mittal and Dym, 1986) has proven to be an efficient approach
to iteration. One body of knowledge is used to generate candidate designs while a
second is used to debug them if they do not meet the design requirements. The de-
bugging knowledge can be acquired from a domain expert and explicitly represented
by production rules. Alternatively, dependency-directed backtracking can be used to
attempt to debug the deficiency (Stallman and Sussman, 1976; Simmons and Davis,
1987). :

Knowledge-based systems work best for problems in which the relevant knowl-
edge is bounded and known. These systems are well suited to symbolic rather than
quantitative reasoning. Similarly, they are ill suited to geometric reasoning because
it is difficult to represent geometry with a small set of axioms (Forbus, Nielsen, and
Faltings, 1991a). Given these considerations, knowledge-based systems are best suited
to routine design problems such as selecting components from a library or select-
ing parameter values in a parametric design problem. As R1 and PRIDE demon-
strated, knowledge-based systems can achieve expert-level performance. Further-
more, knowledge-based system techniques can be used to construct robust design
tools suitable for production use in real-world industrial applications.

MACHINE LEARNING

Machine Learning (ML) is the subdiscipline of AI concerned with collecting knowl-
edge computationally. A program is said to have learned if its performance at a task
improves as a result of previous experiences (Mitchell, 1997). There are several dif-
ferent classes of machine-learning methods. Our discussion is limited to the three
most common: inductive methods, instance-based methods, and analytical methods.

Inductive methods draw generalizations from a set of examples by identify-
ing regularities. Most inductive methods operate by computing an approximation
to an unknown target function. Common inductive methods include decision-tree
learning (Quinlann, 1986; Quinlann, 1993), version-space léarning (Mitchell, 1977
Mitchell, 1982), and neural networks (Parker, 1985; Rumelhart and McClelland,
1986). Instance-based methods do not compute an explicit generalization and in-
stead directly match new problems to the most similar training examples. Common
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instance-based approaches include the k-Nearest-Neighbor algorithm (Cover and
Hart, 1967) and case-based reasoning (Kolodner, 1993).

Similar to inductive methods, analytical methods explicitly generalize from train-
ing examples (Winston et al., 1983; Mitchell, Keller, and Kedar-Cabelli, 1986; Kedar-
Cabelli and McCarty, 1987). However, unlike inductive methods that identify em-
pirical (statistical) regularities, analytical methods use a domain model to construct
the generalizations. The domain model is used to determine which properties of the
example are significant, and hence which should be the basis of the generalization.
Analytical methods are also referred to as “explanation-based learning” because
they generalize by constructing an explanation (proof) for the example.

Learning is often used to approximate design spaces in order to accelerate the
search for a satisfactory or optimal design. For example, Ivezic and Garrett (1998)
have used neural networks to predict the performance of parametric designs. Their
program is trained on a small nwmber of sample designs and can-then predict the
performance of new designs without incurring the cost of expensive simulations and
analyses. Similarly, Jamalabad and Langrana (1998) use an instance-based approach
to accelerate numerical optimization by learning sensitivity (derivative) information.
Finally, Schwabacher, Ellman, and Hirsh (1998) use decision-tree learning algorithms
to learn how to select starting prototypes for numerical optimization problems.

As these examples illustrate, machine learning has a number of uses in design. In
the sections that follow, we focus on the two applications that have the most impact on
automated synthesis: case-based reasoning and learning and reusing design strategies.

CASE-BASED REASONING

When solving new problems, designers frequently rely on previous experience. Case-
based reasoning (CBR) is a learning technique intended to assist in the reuse of
previous problem-solving experience. There are two main tasks a case-based system
must perform; (1) identifying relevant previous design cases and (2) adapting them
as necessary to satisfy the new design requirements, Some case-based systems focus
on just the first of these tasks and rely on the designer to perform case adaptation.
Other systems perform both tasks.

An important consideration in case-based design is how the cases should be rep-
resented. The requirements for a suitable representation depend on the nature of
design domain and whether or not the system performs case adaptation in addition to
retrieval. For retrieval-only systems, itis often adequate to characterize a case in terms
of a fixed set of attributes. This allows for efficient indexing and retrieval of cases.
(The cases can be organized in a taxonomic hierarchy to further accelerate the re-
trieval process.) Other types of data, such as text and CAD models, must be included
for the designer to be able to adapt the case to new problems; however, this additional
information need not be described in a machine-understandable form. For systems
that automate case adaptation, the representation must support a broader range of
inferences. Adapting a case typically involves reasoning about structure, behavior,
function, and the like, and thus the representation must facilitate this reasoning.

Case-based reasoning has been used in a variety of design domains, including
architectural design (Domeshek and Kolodner, 1992), structural design (Mabher,
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Balachandran, and Zhang, 1995), and mechanical design (Goel, Bhatta, and Stroulia,
1997; Chandra et. al., 1992). Here, we focus on just three systems that illustrate the
basic issues in case-based reasoning for design.

CASECAD is a case-based system for the conceptual design of structural systems
for buildings (Domeshek and Kolodner, 1992). CASECAD uses a multimedia rep-
resentation for cases. Each case contains references to CAD drawings, images, and
text that are used by the designer to understand the case information. Each case also
contains a list of attribute-value pairs that are used for indexing and retrieval. The
attributes describe function, such as the desired dead load and wind load capacities;
behavior, such as the displacement and the cost; and structure, such as the maximum
span and material types. CASECAD has a browsing mode that allows the designer to
interactively navigate through the case base. It also has a retrieval mode that allows
the designer to retrieve designs by specifying desired attribute values.

Kritik2 is a case-based system for the conceptual design of physical devices (Goel
et al., 1997). Conceptual design can be viewed as the task of mapping function to
structure. Kritik2 performs this task by using the structure-to-function maps of pre-
vious designs to adapt them to new functional specifications. A case in Kritik?2 is
represented with a structure-behavior-function (SBF) model that explains how the
structure of the device accomplishes its functions. The structure of a device in the
SBF language is expressed in terms of its constituent components and substances,
and the interactions between them. Components include things like batteries and
light bulbs, whereas substances include things like electricity and light. The behavior
of a device is described as a sequence of causal transitions between states. A state is
defined in terms of the existence of a substance, such as the existence of electricity at
a light bulb. The function of a device is characterized by the input and output states.
Figure 7.7 shows the SBF model describing a red light bulb circuit.

To begin a new design problem with Kritik?, the designer specifies the desired
function with an SBF model. The program uses this as a probe into the case memory
and identifies all cases that at least partially match the desired function. These are
then heuristically ordered by their ease of adaptation. Once the program has selected
a design case, it checks if the new design requirements are satisfied, and repairs
the design if necessary. The program is able to repair failed designs by modifying
components and by changing substances. For example, when adapting the design in
Figure 7.7 to a pfoblem with a larger required light output, the program identifies
that the voltage of the battery is responsible for the failure of the retrieved design.
The program then replaces the battery with a higher voltage part.

Whereas Kritik2 adapts a single case, CADET (Chandra et al., 1992) constructs
conceptual designs by combining snippets accessed from multiple previous design
cases. Each of CADET’s cases is a complete design of some physically realizable
device. The cases are described in terms of function, behavior, and structure. The
behavior, which is perhaps the most important part of the representation, is defined
by a set of qualitative differential relations (“influences”) relating the input and
output variables. For example, Figure 7.8 shows a case in which the flow () out of
a water tap monotonically increases with the displacement (X) of the gate valve.

The desired artifact is described to CADET as a set of input and output vari-
ables related by qualitative influences. CADET’s task is to synthesize a structure
that can implement the desired influences. The program first searches the case base
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to identify any known devices that could directly solve the problem. For example, if
the requirement is to create a design for which a flow of water increases with some
linear displacement (Flow <« Linear Displacement), the case in Figure 7.8 would
be a solution. For most problems, however, it is necessary to combine several cases.
CADET does this by using a set of transformations. For example, if the goal is to cre-
ate a device for which rotation is caused by pressure (Rotation < Pressure), CADET
might transform this into (Rotation < Z <~ Pressure), where Z is a new variable.
CADET then looks for all of the cases that could implement the first influence (Z «
Pressure). The choice of a particular case determines Z and thus initiates the search
for a case to implement the second influence. By applying this process recursively,
CADET chains together a sequence of cases to produce an influence graph that
satisfies the design specification.

LEARNING THE DESIGN PROCESS

With case-based reasoning, previous designs are reused to solve new problems. How-
ever, it is sometimes more efficient to reuse the solution process rather than the so-
lutions themselves (Mostow et al., 1989). This section reviews available approaches
to learning and reusing design processes.

Much of the early work was in the area of VLSI design. The BOGART system,
for example, is able replay design plans created with an interactive VLSI design
tool called VEXED (Mostow et al., 1989). VEXED assists the designer in refining a
high-level functional specification of a circuit into modules, submodules, and finally
components such as transistors and gates. At each stage in the refinement process,
VEXED presents the designer with a list of legal refinement rules and the designer
selects the best one. VEXED stores this refinement process as a tree of refinement
rules called a design plan. Once the design plan has been recorded, it can be used to
create new designs. Using BOGART, the designer interactively selects a portion of
the design plan, which BOGART then replays to solve all or part of a problem.

BOGART assumes that the design plan was recorded while the original design
was being created. By contrast, the circuit designer’s apprentice (CDA) uses heuris-
tics to generate BOGART-like design plans from existing VLSI designs (Britt and
Glagowski, 1996). CDA’s approach is called reconstructive derivational analogy. CDA
uses heuristics to determine which refinement rules might have been used to con-
struct the circuit. Once CDA has inferred a likely refinement plan, that plan can be
replayed to solve new problems.

BOGART and CDA are called replay systemns because they create new designs
by replaying the sequence of refinement rules that was used, or may have been
used, to construct a previous design. The LEAP system, by contrast, attempts to
reuse design knowledge by inferring new refinement rules from previous designs
(Mahadevan et al., 1993). It does this by using verification-based learning (VBL), a
form of explanation-based learning. LEAP uses a circuit verification theory to prove
that a given circuit refinement step is logically equivalent to the original specification.
It then generalizes the proof, using a process similar to Prolog-EBG (Kedar-Cabelli
and McCarty, 1987), to form a new refinement rule. Figure 7.9 shows an example
that concerns the design of a module whose output is specified to be the conjunction




ARTIFICIAL INTELLIGENGE FOR DESIGN

int
in2
in3
ind

M o
In2 norz2
nord

ina nort
in4

If the module to be imptemented is of this form:

out

{And Or Or)

out

Figure 7.9. Top: specification for a module in LEAP

(Mahadevan et al., 1993); middle: the result of manual

refinement of the module; bottom: the new refinement

rofe LEAP learned from this example. in1
in2
in3
in4

{and F1 F2)

out

Then refine it into the following circuit;

:%Q—— out

in3 | nor

ind — {not FZ)i——

(AND) of two disjunctions (ORs). The designer chose to implement this module
by using three NOR (Negated OR) gates as shown in the figure. LEAP first proves
that the refined circuit is valid. It then generalizes this proof into the refinement
rule shown at the bottom of the figure. This rule states that the conjunction of any
two binary Boolean functions (not just ORs) can be implemented by negating each
Boolean function and combining their outputs with a NOR gate.

The IDeAL system uses a model-based method for learning generic teleologi-
cal mechanisms (GTM’s) such as cascading, feedback, and feedforward (Bhatta and
Goeal, 1997). IDe AL is built on the KRITIK system, an earlier version of the Kritik2
system described above. Tolearn a GTM, IDe AL requires SBF models of two similar
devices, one embodying the GTM, the other lacking it. IDeAL is able to infer the
GTM by comparing the two SBF models. For example, when comparing a light bulb
circuit with two batteries in series, to one with a single battery, IDe AL learns the
notion of cascading: using multiple components in series to achieve a greater out-
put. IDe AL is able to abstract this notion into a domain-independent principle. For
example, it can use cascading to increase the temperature drop in a heat exchanger.

LearnIT is a computer program that learns a designer’s design strategy by ob-
serving how he or she solves a design problem (Stahovich, 2000). The program’s
domain is iterative parametric design: design problems that are solved by iteratively
adjusting a set of parameters until the design requirements, expressed as algebraic
constraints, are satisfied. LearnlT is a transparent software layer that sits on top of
the usual modeling and analysis software (Figure 7.10). [t unobtrusively observes the
sequence of design iterations and from this generates a set of design rules describing
the designer’s strategy. These rules can then be used to automatically create new
designs satisfying new design requirements. Because the rules are learned from the
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designer, the new designs reflect the designer’s engineering judgment, knowledge of
implicit constraints, and overall familiarity with the problem.

The program’s learning technique is based on two insights. The firstis that iterative
solutions to design problems are typically a form of debugging. At each iteration the
designer identifies the unresolved flaws in the design and chooses a design action to
eliminate those flaws. Thus, a design strategy can be thought of as a mapping from
design flaws to design actions. The second insight is that the states of the design
constraints — whether they are satisfied or not — are often a good indicator of the
design flaws the designer is considering at any given time.

These insights lead to a specialized instance-based learning technique. Because
the technique is instance based, the learning consists simply of recording observed
design iterations. These are recorded in the form of design rules. A rule describes a
particular state of the design and the corresponding action to take. The design state
is defined by the states of the constraints and the action is a modification (increase
or decrease) of a specific parameter.

Figure 7.11 shows a sample rule from the LearnIT system. This rule comes from
the design of a circuit breaker. The original design task was to find parameter values to
make the device trip after 5 seconds of a 15-amp overload. The sample rule indicates
that when the device does not trip at the specified current, the preferred action is to
decrease the thickness of each layer of the bimetallic strip. This rule embodies, but
does not explicitly represent, several of the designer’s insights into this particular
design problem. For example, it reflects the fact that reducing the thickness of the
bimetallic layers is the most efficient way to increase the hook deflection and thus
make the device trip. (The fact that this rule is the most preferred way to repair this
flaw is represented by the rule’s low rule number.) This modification is particularly
effective because it both increases the electrical resistance so that the hook heats
faster and decreases the bending resistance. Similarly, the rule’s limit embodies the
insight that making the hook too thin will make the hook fragile and increase the
risk of accidental tripping. Designs created with this rule automatically reflect these
implicitly captured insights.

Because Learnl'T’s approach is instance based, the bulk of the work occurs when
a new situation must be matched to a previous rule. LearnIT’s rule matching pro-
cedure considers the states of the design constraints, the designer’s preferences for
particular rules, the rule limits, and the likely outcomes of the rules. To create new
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Figure 7.11. Top: a parameterized circuit brea-
ker model; bottom: a design rule from LearnIT
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designs, LearnlT applies its rule base in an iterative fashion. Tt evaluates the state of
the design, identifies the best rule, and changes the corresponding parameter. This
process repeats until all of the constraints are satisfied or until there are no remaining
rutes. The new designs that are created in this fashion are similar to those the designer
would have created because the rules are learned from the designer.

The LearnlT 1 system performs the same task as the LearnlT system, but it uses
an inductive learning technique rather than an instance-based one (Stahovich and
Bal, 2001). LearnlIT assumes that the designer’s actions are determined primarily by
the states of the design constraints. LearnIT II, in contrast, uses decision-tree learning
to explicitly determine which properties of the design, or of the design history, best
indicate which design actions the designer will take. LearnlT II is able to learn a
much broader range of design strategies than LearnIT could. For example, it is able
to learn strategies that depend strongly on the design history as well as those that
depend strongly on the state of the design itself.

CURRENT UNDERSTANDING

The previous section on knowledge-based systems demonstrated the high level of per-
formance that can be achieved by programs using expert problem-solving
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knowledge. One difficulty with knowledge-based systems, however, is that it can be
expensive to develop and maintain a knowledge base. The machine-learning tech-
niques discussed in this section provide one means of automatically generating a
knowledge base.

Machine learning has a variety of applications in design and engineering. These
techniques are useful anytime it is necessary to infer an unknown target function
from a set of examples. The learned function can be used to both interpolate and
extrapolate from the examples. These techniques can also be used to learn an in-
expensive approximation to a known function that is expensive to evaluate. Neural
networks are one of the most common techniques for learning continuous-valued
target functions, whereas decision trees are one of the most common techniques for
learning discrete functions.

There are two main applications of machine learning for synthesis: reusing designs
and reusing design processes. Case-based reasoning is the most common technique
for design reuse. Case-based systems assist in identifying previous design cases that
are relevant to a new problem. Some systems can automatically adapt the previous
cases to the new problem. Doing this requires a model of behavior and function. Most
current systems rely on hand-generated models. The qualitative physical reasoning
techniques described in the next section may provide a means of automatically gen-
erating these models, thus greatly extending the range of capabilities of case-based
design systems.

The learning and reuse of design processes is an emerging application of ma-
chine learning. There is some evidence that suggests it is often more efficient to
reuse the solution process rather than the solutions themselves. For this application,
some success has been achieved by using learning techniques that identify empirical
regularities in the training data. However, the next advances will likely come from
explanation-based learning techniques. Here again, the qualitative physical reason-
ing techniques described in the next section may provide the necessary tools for using
explanation-based learning for this application.

Asmore of design is performed electronically, there are more opportunities to ap-
ply machine learning. Much useful information generated during the design process
is lost. Machine learning has the potential to capture and preserve this information
for future use.

QUALITATIVE PHYSICS

Qualitative physical reasoning (QPR) techniques allow a computer program to per-
form commonsense reasoning about the physical world. This set of techniques is
intended to provide computers with some of the same kinds of physical reasoning
abilities that human designer’s use in problem solving. -

As the name suggests, qualitative reasoning techniques work from qualitative
rather than quantitative problem representations. Qualitative representations cap-
ture the significant characteristics of a problem and abstract away the rest. For exam-
ple, for a problem involving fluid flow into and out of a tank, a qualitative represen-
tation might describe whether the inflow was less than, equal to, or greater than the
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outflow. Even this abstract representation would allow useful predictions to be made.
For example, this information is adequate for determining if the tank will eventually
empty, although it would not be adequate for predicting how long that would take.
The benefit of working from a qualitative representation is that predictions of behav-
ior can be made before the quantitative details have been determined. For example,
the IBIS and CADET systems described earlier (in the first and third sections) use
networks of qualitative influences to predict the behavior of a candidate design prior
to selecting actual physical components.

This section first reviews the two main classes of qualitative reasoning techniques:
those suitable for lumped parameter systems and those that consider geometry. Next,
two important applications are constdered: causal explanation and design general-
ization. Causal explanations are descriptions of how a device achieves its behavior.
These explanations are useful for adapting a design to new applications. Design gen-
eralization techniques take a single design, construct an explanation 'of how it works,
and then generate new alternatives that work the same way.

LUMPED PARAMETER SYSTEMS

Much of the early work in qualitative physics focused on devices that could be de-
scribed with lumped parameter models, such as electric circuits, hydraulic systems,
and thermodynamic systems. In a quantitative world these devices are described
with ordinary differential equations and algebraic constraint equations. In a qualita-
tive world they are described with qualitative versions of these equations. Typically,
these are in the form of qualitative constraints. Behavior is predicted by propagating
qualitative values through these constraints.

Among the earliest work was de Kleer’s QUAL program, which could produce
causal explanations of the small signal behavior of electric circuits (de Kleer, 1979).
Small signal behavior is the behavior that occurs within a single operating mode of
a device. Each component is modeled with a qualitative constraint equation that
relates the signs of the derivatives of the inputs and outputs. The program uses a
constraint propagation technique to perform “incremental qualitative” analysis and
determine how changes in the circuit’s inputs propagate through the circuit.

Williams (1984) created a program that could reason about both the small signal
and the large signal behavior of an electric circuit, greatly extending the ability of
a program to reason about changes in operating mode. The program computed the
small signal model that applied in a particular operating mode, then predicted which
parameters changed, possibly causing a transition to another operating mode. The
program then used constraint analysis to determine which of the possible transitions
would actually happen first.

The ENVISION program, which built upon QUAL, is another system that could
reason about changes in operating mode (de Kleer and Brown, 1984). With
ENVISION, the behavior of each component is characterized by a set of qualita-
tive states or operating modes. The behavior in each state is characterized by a set
of “confluences,” describing how changes in variables propagate to other variables.
Confluences are concerned with the directions of change rather than the magni-
tudes. For example, flow through a valve (or other orifice) could be modeled with this

251



252

THOMAS F. STAHOVICH

confluence: 9 P — 8(Q = 0. Thisrepresents the fact that an increase in pressure results
in an increase in flow, but it says nothing about the magnitudes of the changes.

ENVISION models the passage of time as a sequence of episodes. Within an
episode each component remains in the same state. The behavior within an episode
is determined by identifying a consistent direction of change (+, 0, or —) for each vari-
able. The task is a constraint satisfaction problem (see the first section) because the
confluences form constraints on the directions of change. ENVISION identifies all
possible device states by identifying the consistent variable assignments for each com-
bination of component states, It then reasons about the directions of change to iden-
tify legal transitions between device states. Suppose, for example, that device state A
is valid only when some variable X is less than C, and state B is valid when X > C. If
X is increasing when the device isin state A, then a transition from A to B is possible.

Kuiperslater formalized the qualitative mathematics for predicting behavior from
qualitative constraint equations, resulting in QSIM (Kuipers, 1986). With QSIM, a
physical system 1s described by a set of symbols representing the physical parame-
ters. The value of a parameter is specified in terms of its relationship with a set of
ordered landmark values. A set of constraint equations describe how the parameters
are related to each other. Some of the constraints are qualitative analogs of common
mathematical relationships such as DERIV (velocity, acceleration}, MULT (mass,
acceleration, force), ADD (net flow, outflow, inflow), and MINUS (forward, reverse).
Others specify that one parameter is a monotonically increasing or decreasing func-
tion of another: M (size, weight) and M~ (resistance, current).

With QSIM, the initial state of a system is defined by a set of active constraints
and a set of qualitative values for the parameters. The simulation proceeds by first
enumerating all possible qualitative values each parameter can have next, ignoring
the constraints. For example, if a parameter is at a landmark and steady, in the next
step it may be beyond the landmark and increasing, it may be below the landmark
and decreasing, or it may still be at the landmark and steady. The constraints are then
applied to identify the legal combinations of next parameter values. It is common for
there to be multiple legal combinations and thus the simulation often branches.

Figure 7.12 shows an example of a QSIM simulation of the flow of water between
two tanks. Figure 7.12(b) shows the constraints relating the parameters. Initially the
levels in the two tanks are the same; then additional water is added to tank A. Figure
7.12(c) shows the simulation results. As the water is added to A, the pressure at the
bottom of the tank increases, causing water to flow into B. As the water flows from A
to B, the pressure in A decreases while that in B increases. As the pressure difference
decreases, so does the flow between the tanks. Eventually, the pressure difference
and flow become zero. Notice that QSIM is able to predict this behavior without
knowing anything quantitative about the system: the specific amounts of water, the
density of water, the size of the tanks, and so on are unspecified.

Much of the work in QPR has been device centric, meaning that device models
are constructed by assembling models of the individual components. This approach
is well suited to systems such as electrical and hydraulic circuits, but it cannot easily
handle phenomena such as boiling, which do not involve a fixed collection of “stuff.”
To handle those kinds of problems, Forbus developed qualitative process theory that
takes a process-centric perspective (Forbus, 1984). The representation of a process
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includes the set of objects that must exist and the preconditions that must be satisfied
for the process to occur. The representation also includes a set of “influences” (similar
to confluences) describing how the parameters change when the process is active.

QUALITATIVE PHRYSICS WITH GEOMETRY

The first attempt at qualitative reasoning about force and geometry was de Kleer’s
NEWTON program (de Kleer, 1977), whose domain was the one-dimensional world
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of roller coasters. NEWTON used qualitative reasoning to envision the possible
behaviors of a particle-on a curved track and then used mathematical equations
to resolve the ambiguities. The track was described qualitatively as a sequence of
segments, with each segment having a constant direction of curvature and a slope of
constant sign. The envisionment predicted which segments could possibly be reached
and in what order (see e.g., Figure 7.13). For example, when ascending an incline,
the particle may reach the top of the segment, and thus reach the start of the next
segment, or it may stop part way up and slide back down. The program would use
energy equations to determine which of the two behaviors would actually happen in
this case.

The next attempt at mechanics problems was Forbus® FROB system, which rea-
soned about particles in a two-dimensional well (Forbus, 1980). Forbus introduced
the notion of a “place vocabulary,” which divided the well into regions where the
behavior was similar. Simulation proceeded by reasoning about the transitions from
one place to the next.

Both NEWTON and FROB reasoned about the motions of individual particles.
The next step was to consider the behavior produced by interacting shapes. Initial
attempts at this relied on a mix of quantitative and qualitative reasoning. For exam-
ple, Joskowicz and Sacks created a simulator that combined a qualitative version of
Newton’s laws of motion with a quantitative geometric reasoning technique. The
latter technique worked from a “region diagram,” a decomposition of configura-
tion space that is similar to a place vocabulary (Joskowicz and Sacks, 1991). This
system could simulate a wide range of practical devices and could produce concise
descriptions of the behavior.

c3
S3
Cl . c3 c4
52
FALL FALL
c2
s1
cl \
0sC
FALL
(a) (b}

Figure 7.13. An example from NEWTON (de Kleer, 1977): (a) one-dimeénsional roller coaster with
labeled segments; (b) envisionment (iree) indicating possible sequences of motions.
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Faltings (1990) developed a system that used place vocabularies to produce qual-
itative kinematic simulations. The place vocabulary is a qualitative geometric repre-
sentation that is constructed using quantitative analysis. Thus, this approach, too, is
partially quantitative. This work was later combined with qualitative techniques for
reasoning about forces and mechanical constraints, producing a system capable of
qualitatively predicting rigid-body dynamics (Forbus et al., 1991). This system works
as a total envisioner: it computes all possible states of the device and all legal transi-
tions between them. It then computes which of these states are actually visited for a
specific set of initial conditions and éxternal inputs.

Stahovich, Davis, and Shrobe (1997, 2000) developed a qualitative rigid-body
dynamic simulator that requires no quantitative information. This simulator works
directly from a qualitative geometric representation called qualitative configuration
space (Qc space). In Qc space a mechanical interaction between a pair of part faces
is represented as a qualitative configuration space curve (Qcs curve) describing the
configurations of the device for which the pair of faces touch each other (Figure 7.14).
Each Qcs curve is a family of monotonic curves all having the same qualitative slope.
The end points of the Qcs curves are marked with landmarks. The landmarks are
ordered relative to one another, but there are no quantitative distances in Qc space.
A special form of Qcs curve, called a boundary, is used to represent the neutral
positions of springs and the motion limits of actuators.

To compute a step of simulation, the simulator first computes the net force on
each body. Summing qualitative quantities often leads to ambiguity. To avoid this, a
special qualitative force representation was used. This representation considers the
projections of the forces onto the degrees of freedom of the device and describes each
force by its magnitude, direction, and the type of constraint it imposes. Once the net
forces are computed, quasi-static assumptions are used to determine the direction of
motion of each part.

A simulation step ends when an event changes the nature of the forces. Events
mclude two bodies colliding, two objects separating, a spring passing through its
neutral position, and a motion source turning on or off. The simulator performs the
geometry-intensive task of identifying the next event by working directly from the
Qc-space representation. As the parts of the device move, the configuration traces out
a qualitative trajectory through Qc space. An event is detected by geometrically de-
termining when the trajectory leaves or reaches a Qcs curve or boundary in Qc space.

fixed surface

actuator

-

| N

. e
Figure 7.14. A simple mechanical system and its Qc space description (Stahovich et al., 2000).
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Sometimes there is more than one possible next event. When this occurs, the
simulator branches to consider all of the possibilities. However, unlike an envisioner,
which must first compute all possible states of the device, this simulator directly
computes just those states of the device that could be visited for the given initial
conditions and external inputs.

CAUSAL EXPLANATIONS

This section describes a set of qualitative reasoning techniques that allow a program
to produce causal explanations of a device’s behavior. These explanations are useful
for a variety of tasks including diagnosis and design reuse. Currently, the explana-
tions these techniques generate are intended for human use. However, it may be
possible to extend these techniques to create tools for automated design reuse. For
example, case-based reasoning systems can adapt previous design solutions to solve
new problems, but doing this requires models of behavior and function. Most current
systems rely on manually constructed models such as the one in Figure 7.7. Causal
reasoning techniques may provide a means of automatically generating behavioral
and functional models. |

There are a variety of causal reasoning techniques suitable for devices that can be
described by ordinary differential equations and algebraic constraints (i.e., lumped
parameter models). Many of the qualitative simulation techniques described in the
fourth section naturally produce causal explanations. For example both de Kleer’s
QUAL system (de Kleer and Brown, 1984) and Williams® qualitative circuit sim-
ulator (1984) produce causal explanations of behavior. These techniques identify
causality by examining the order in which quantities propagate through the qualita-
tive equations. Another technique, called causal ordering, produces causal explana-
tions by examining the order in which the equations must be solved; that is, which
equations can be solved first, which can be solved once those are solved, and so
on (Iwasaki and Simon, 1986; Gautier and Gruber, 1993; Gruber and Gautier, 1993).

Although there are a number of causal reasoning techniques for lumped pa-
rameter systems, there are relatively few techniques for reasoning about geometric
interactions. One such system is Shrobe’s linkage understanding program, which ex-
amines kinematic simulations of linkages in order to construct explanations for the
purpose of the parts (Shrobe, 1993). The program first numerically simulates the be-
havior of the linkage by using a kinematic simulator. By examining the order in which
the simulator solves the kinematic constraints, the program decomposes the linkage
into driving and driven modules such as input cranks, dyads, and four-bar linkages.
It then examines traces of the motion of special points on the driven members (such
as coupler points) and the angles of the driving members to look for interesting fea-
tures. Next, geometric reasoning is used to derive causal relationships between the
features.

Figure 7.15 shows an example concerning a six-bar linkage. The program decom-
poses this linkage into a four-bar linkage driving a dyad. When examining the motion
traces the program notices: (1) the angle of the output rocker arm (GF) has a pe-
riod of constant value, (2) the coupler curve (trace of E) has a segment of constant
curvature, and (3) the radius of curvature of this segment is nearly equal to the length
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Figure 7.15. Shrobe’s linkage understand-
ing systerns determines that the purpose of
this device is to cause dwell (Shrobe, 1993).

of the driven arm of the dyad (EF). From this and other similar facts, the program
hypothesizes that the purpose of the coupler moving in a circular arc is to cause the
output to dwell.

Stahovich and Raghavan’s ExplainIT program is another system that can produce
causal explanations of behavior for devices that depend on geometry. ExplainlT
is a computer program that computes the purposes of the geometric features on
the parts of a device (Stahovich and Raghavan, 2000). ExplainIT identifies purpose
by siunulating how removing a geometric feature alters the behavior of a device.
Ordinarily simulations describe what happens but not why. Thus, a simulation does
not directly indicate which of a device’s many behaviors are caused by a given feature
on a given part. To identify those behaviors, ExplainIT compares a simulation of the
nominal device to a simulation with the feature removed. The differences between
them are indicative of the behaviors the feature ultimately causes.

The primary challenge in implementing this “remove and simulate” technique is
accurately identifying the differences between the nominal and modified simulations.
Direct numerical comparison of the state variables is not useful because there are
likely to be differences in force magnitudes, velocities, accelerations, and so on, at
every instant of time. Many of these differences are insignificant, such as those result-
ing from the small change in mass that occurs when the feature is removed. To avoid
this problem, ExplainIT abstracts the simulation results into a qualitative form that
reveals the essential details. The program then identifies the first point at which the
two simulations begin to qualitatively differ. This is the point when the feature must
perform its intended purpose to make the device end up in the correct final state. The
program uses the laws of mechanics to construct a causal explanation for how the
feature causes the behavior observed at this point in the simulation. It then translates
this causal explanation into a human-readable description of the feature’s purpose.
Figure 7.16 shows an example of the kind of explanation the program can provide.

Stahovich and Kara’s ExplainIT IT system uses a different version of the remove
and simulate technique to compute purpose (Stahovich and Kara, 2001). The program
starts with two simulations of a device, one with the feature and one without. It then
rerepresents the two simulations as a set of processes with associated causes, that
is “causal processes.” To identify the purpose of the removed feature, the program
identifies all causal processes unique to one or the other of the two simulations.
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Spring

Lead Channel

Collet Ring

Explanation of the collet taper: The taper on the collet interacts with the ring to produce a wedging force (i.e., the
ring is press-fit onto the collet). This force applies a moment to the collet that is balanced by the moment of a force
that the lead applies to the collet. By Newton's third law, there must be an equal and opposite force that the collet
applies to the lead, and that force gives rise to a friction force, which eventually causes the lead to advance.

Figure 7.16. Top: A mechanical pencil. Bottom: An explanation for the purpose of the taper on the collet
paraphrased from ExplainIT’s output (Stahovich and Raghavan, 2000).

ExplainIT IT’s causal-process representation allows the program to reliably de-
termine when a piece of behavior from one simulation is the same as a piece from
the other. By a process of elimination, this allows the program to accurately deter-
mine when a piece of behavior is unique to one or the other of the simulations. It
is common for a particular behavior to repeat multiple times during a simulation,
especially if the device operates cyclically. By explicitly considering the causes of be-
havior, ExplainIT II can determine which instance of behavior from one simulation
is the same as that from the other: two similar behaviors are the same if they have
the same cause.

DESIGN GENERALIZATION

One of the challenges in automating design synthesis is specifying what is desired. It
is often difficult to provide a completely abstract description of the design require-
ments. The problem is not simply the lack of a suitable specification language. The
more challenging problem is thinking about an as yet unrealized design in abstract
terms. This section describes an alternative means of describing requirements that
avoids this problem. Rather than working from an abstract description, the programs
described here work from a concrete example. The designer provides a specific ex-
ample of the kind of device that is desired, and the programs generalize it to provide
alternative designs. These programs could be described as performing “design by
example” rathier than the traditional “design by specification.”

The first example of this approach is 1*PRINCE, which uses a methodology
called dimensional variable expansion (DVE) to generalize the design of a structure
in the context of numerical optimization (Cagan and Agogino, 1991a, 1991b).° The
program generalizes a design by expanding the variables representing the critical
dimensions (i.e., the critical “dimensional variables”) into multiple regions, each of
which can have its own set of material properties. This provides additional degrees
of freedom to the optimization process and allows the program to innovate new
designs that are substantially better with respect to the objective function than the

5 DVE is technically not a qualitative physics technique in that it reasons primarily about the form of the
governing equations, DVE is included in this section because of the kind of task it performs rather than
the approach it uses.
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solid rod

Figure 7.17. Applying DVE to a solid
shaft under torsion, 1I**PRINCE generates
ahollow tube, a composite rod, and a com-
posite hollow tube (Cagan and Agogino,
1991a).

composite rod

4
composite
hollow tube

original. Figure 7.17 shows an example in which the objective is to design a torsion
shaft of minimum weight. DVE generalizes the initial solid rod into a hollow tube, a
composite rod, and a composite hollow tube.

The critical dimensional variables are identified by examining the nature of the
design constraints. The solution to a constrained optimization problem is typically
determined by a set of “active” constraints. In satisfying the active constraints, the
solution naturally satisfies the other inactive constraints, which are still far from
their limits. For example, in structural optimization, a constraint imposed by the
ultimate tensile strength would be naturally satisfied if a constraint imposed by
the yield strength were already satisfied. 1*PRINCE uses monotonicity analysis
(Papalambros and Wilde, 1988) to identify the possible sets of constraints that may
be active in the optimal solution. Each such set is called a prototype. The program
applies DVE to the dimensional variables associated with the active constraints in
each prototype.

After I"PRINCE applies DVE and splits a critical dimensional variable into two
regions, it repeats the monotonicity analysis. If each of the new regions is limited
by the same set of active constraints as the original prototype, the program applies
DVE to the two new regions, resulting in a total of four regions. If DVE can be
applied for three consecutive iterations, 1*PRINCE uses induction to generalize to
an infinite number of infinitesimal regions, resulting in a continuous function. For
example, Figure 7.18 shows an example in which the objective is to minimize the
weight of a cantilever beam. The initial design has a uniform circular cross section.
In the final design, the cross section is a continuous function of the position along
the beam.

The second example of “design by example” is Stahovich et al.’s SKeTcHIT sys-
tem, which can transform a stylized sketch of a mechanical device into multiple
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A 4
Figure 7.18, Applying DVE to the uniform cantil-
ever beam, I®'PRINCE induces a beam with variable
cross section as a means to reduce weight while satis-
fying stress requirements (1991b).

A 4

tamilies of new designs (Stahovich et al., 1996, 1998). SxercaIT uses a paradigm
of abstraction and resynthesis as shown in Figure 7.19. During the abstraction pro-
cess, the program reverse engineers and generalizes the original design by using the
qualitative configuration space (Qc space) representation described above. Qc space
enables the program to identify the behavior of the individual parts of the design
while abstracting away the particular geometry used to depict those behaviors.

QC Space

Ao, )

’ Motion
WAl Types

& Desired
Behavior

Figure 7.19. Overview of the SkercaIT system (Stahovich et al., 1998).
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To interpret asketch, the program begins by directly translating it into an initial Qc
space. The program then uses Stahovich’s qualitative rigid-body dynamic simulator
described above (in a previous subsection) to simulate the behavior of the Qc space
and determine if the sketch as drawn is capable of producing the desired behavior.
‘The desired behavior is a specific sequence of kinematic states that this particular
geometry should achieve (i.e., the description is concrete rather than abstract). The
sequence is described with a state transition diagram.

If the initial Qc space works correctly, the program is done with the abstraction
process. If not, the program modifies the Qc space and repeats the process. Once
it has found a working Qc space, the program uses it as a specification from which
the program synthesizes new implementations. SKeTcHIT uses a library of geometric
interactions to map the individual parts of the Qc space (Qcs curves) back to ge-
ometry. Each library entry is a chunk of parametric geometry with constraints that
ensure it implements a particular kind of behavior. By assembling these chunks, the
program produces a behavior-ensuring parametric model (BEP model) for the de-
vice. A BEP model is a parametric model augmented with constraints that ensure the
device produces the desired behavior. Each BEP model is a family of solutions that
are all guaranteed to work correctly. Different members of the family are obtained
by selecting different parameter values that satisfy the constraints of the BEP model.

SKEeTcHIT’S library contains multiple implementations for each kind of behavior
(Qcs curve), and thus the program is able to generate multiple families of implemen-
tations (BEP models). Additionally, the Qc space representation allows SkerculT
to identify when it is possible to replace rotating parts with translating ones and
vice versa. This ability provides SkeTcHIT with another means of generating design
alternatives.

Figures 7.20 and 7.21 show the kind of stylized sketch and state transition diagram
that SkercuIT takes as input. This particular example concerns the design of a circuit

engagement pairs:
f1-16
actuator fo - 15
f3-14
f7 18 {7 - 18

pushrod (fixed surface)

hook: bimetallic strip

Figure 7.20. A stylized sketch of a circuit breaker given to SKETCHIT as input (Stahovich et al., 1998).
Engagement faces are bold lines. The sketch is created in a mouse-driven sketching environment, '
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(b)

Figare 7.21. The desired behavior of a circuit breaker (Stahovich et al., 1998): (a) physical interpretation;
(b) state transition diagram.

breaker similar to those found in a residential electrical system. From this input, the
program generates several families of designs. Figure 7.22 shows a portion of the
BEP model for one of these families (the one that is most similar to the original
sketch). Figure 7.23 shows a different design the program created by selecting new
geometry for the interacting faces, and Figure 7.24 shows another design created by
replacing a rotating part with a translating one.

QUALITATIVE PHYSICS: GURRENT UNDERSTANDING

Qualitative physical reasoning (QPR) techniques have been used extensively for
performing qualitative simulation. They are also frequently used for generating ex-
planations of behavior and for performing diagnosis. The most common application
to design is the use of qualitative simulation to reason about the behavior of a device
before concrete implementations have been selected for the parts. The IBIS, Kritik2,
and CADET systems described in earlier sections all use QPR for this purpose.

T4
$13 2.728
L15 0.142
Figure 7.22. Part of a BEP model from SkercHIT
{Stahovich et al., 1998). Top: Parametric geometry;
bottom: constraints.
R ) PHI16 135.013
\f5
PSI17 134.782 i r H1_110.101
H2 12 0.041—»
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K }push-pair
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Figure 7.23. A design variant SkeTculT
obtained by using different implementa-
tions for the engagement faces {Stahovich _
et al., 1998). D)) pivot

lever-stop {
} cam-follower

Qook

Current applications do not tap the full potential of QPR as a synthesis tool. There
is clearly much work left to be done. Interestingly, some of the areas that are ripe for
- progress may be the areas where QPR intersects the other techniques described in
this chapter. For example, the first section described search-based “design by repair”
techniques. These techniques synthesize by searching for a sequence of modifica-
tion operators to repair an initial candidate design. Qualitative physical reasoning
may provide tools for understanding why a design fails so that suitable modification
operators can be identified with a minimum of search.

There are a number of ways that QPR can be used in conjunction with machine
learning. For example, the third section described systems that learn and reuse design
strategies. Qualitative physical reasoning might be able to extend explanation-based
learning to this problem area. Recall that explanation-based approaches often per-
form better than approaches that rely solely on empirical regularities. As mentioned
earlier, QPR might also provide a means of extending the capabilities of case-based
reasoning systems. The techniques described above in the previous subsection might
provide the necessary tools for creating the behavioral and functional models needed
for case adaptation.

Amnother emerging application of QPR is design generalization. A common dif-
ficulty with automated synthesis techniques is specifying what is desired. It is often
easier to generate an example of what is required than to provide an abstract de-
scription of it. Design generalization techniques enable a program to automatically
derive the abstract specification from a specific example. The current generalization

pushrod %

Figure 7.24. A design variant SKETCHIT obtained by replacing a rotating lever with a translating part
(Stahovich ef al., 1998).
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techniques are limited to kinematic/dynantic behavior and structural behavior. There
is a need for approaches that can handle other kinds of behavior, including thermal
behavior, fluid flow, and the like.

There are a variety of QPR techniques suitable for lumped parameter models;
however, there are relatively few techniques that can reason about geometry. Because
much of the behavior of a mechanical device is determined by geometry, there is
a need for additional qualitative geometric reasoning techniques. Creating these
techniques will provide a significant challenge, but the potential benefits are vast.

FINAL CHALLENGES

In this chapter, we have explored the application of Al to design synthesis. We
have considered those subdisciplines of Al that are the most relevant to synthesis,
namely search, knowledge-based systems, machine learning, and qualitative physical
reasoning. The strengths and weaknesses of these techniques were discussed earlier;
here we conclude by suggesting a few important areas for future work.

It has been common in Al research to consider devices that are composed of
linear sequences of idealized components connected at well-defined ports. Examples
include chains of power transmission components and chains of simple mechanisms.
These types of devices provide a number of computational advantages. The linear
topology helps to restrict the size of the search space, and the discrete nature of the
components and interconnections facilitates the construction of behavioral models.

Although these types of devices are used in practice, there are many common,
real-world devices that cannot be described as a linear sequence of discrete parts.
Many real-world devices have components that are highly interconnected, and the
connections between the components often change as the device operates. Further-
more, a given function may be split across multiple components, or a single com-
ponent may have multiple functions. Consider, for example, a car door, which must
provide a means of entering, exiting, and securing the vehicle. The door must also
provide structural integrity, aesthetic shape, controls for power mirrors and windows,
ducts for defrosters, channels for wires, and so on. In this case, there are no obvious
linear sequences of functions or components. In fact, much of the functionality is
distributed in a few large pieces of sheet metal. Scaling existing synthesis techniques
to handle these kinds of complexities will provide a significant challenge. Part of the
solution may be to choose a new ontology, viewing devices as collections of interac-
tions (Williams, 1990;Stahovich et al., 1998) rather than as collections of components.

Many of the automated synthesis techniques described in this chapter are re-
stricted to functions that can be expressed as a desired relationship between two
scalar parameters. Examples include transforming a voltage into an angular deflec-
tion or transforming a reciprocating linear motion into a continuous angular motion.
Although there are useful devices that can be specified in this fashion, many com-
mon, real-world devices cannot. Consider a specification of this form: create a device
that can bore a hole in a pressurized water pipe and insert a fitting without losing
any water.S In this case, there are no obvious parameters to be related and hence
traditional specification languages would be unsuitable.

% Such devices are used to tap into pressurized water mains.
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Future work on specification languages should also address the fact that devices
typically have multiple states or operating modes, and hence have different functions
at different times. For example, a camera has modes for loading film, winding film,
cocking, shooting, rewinding, and so on. Work in this area should also be driven by
the design of devices with highly interconnected parts and integrated functionality
(as described above).

The traditional approach to specification is to describe a desired function in terms
of a simple, identifiable piece of behavior, such as a quantity remaining constant
or one quantity being proportional to another. It may be possible to extend this
approach to more complicated kinds of functions by developing better techniques
for characterizing behavior. Alternatively, the “design by example” approach de-
scribed above may provide a means of specifying a broader range of functions. Rather
than attempting to categorize different types of standard behaviors, the“design by
example” approach relies on methods for identifying when two behaviors are the
same. Identifying similar behaviors may prove more general than creating defini-
tions of behaviors. '

Perhaps the most important area for future work is geometric reasoning. Most
of the automated synthesis techniques described in this chapter have only lim-
ited geometric reasoning abilities. However, for mechanical design, geometry is of
primary importance. Much of the behavior of a mechanical device is determined
by the geometry of its parts. The geometric reasoning techniques of Joskowicz and
Addanki (1988) and Stahovich et al. {1998) are a starting point for this work, but there
is much left to be done. Geometric reasoning will likely pose the biggest challenges
in applying Al to synthesis. However, success in this area will lead to substantially
more powerful and more general synthesis tools.
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