Chapter 1
INTRODUCTION

Chris Tong and Duvvuru Sriram

1.1. WHAT THIS BOOK IS ABOUT

What is design? Design is the process of constructing a description of an ar-
tifact that satisfies a (possibly informal) functional specification, meets certain
performance criteria and resource limitations, is realizable in a given target tech-
" nology, and satisfies criteria such as simplicity, testability, manufacturability,

reusability, etc.; the design process itself may also be subject to certain restric-
tions such as time, human power, cost, etc.

Design problems arise everywhere, and come in many varieties. Some are
born spontaneously amidst the circumstances of ordinary human lives: design a
dish for dinner that uses last night’s leftovers; design some kind of hook-like ar-
tifact that will enable me to retrieve a small object that fell down a crack; design
a “nice-looking" arrangement of the flowers in a vase. Other design problems
are small but commercial in nature: design a paper clip-like device that doesn’t
leave a mark on the paper; design a lamp whose light can be turned to aim in
any particular direction; design an artifact for storing up to twenty pens and pen-
cils, in an easily accessible fashion. Still other design problems are formidable,
and their solutions can require the efforts and coordination “of hundreds of
people: design a space shuttle; design 2 marketable electric car; design an inter-
national trade agreement; etc.

Because design is so ubiquitous, anything generic we can say about the design

"/ process -- the activities involved in actually solving a design problem -- can

have great impact. Even better would be to provide active ‘help to designers.
This book is all about how ideas and methods from Artificial Inteiligence can
help engineering designers. By "engineering design", we primarily mean the

/ design of physical artifacts or physical processes of various kinds. In this book,

we will see the design of a wide variety of artifacts exemplified, including: cir-
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cuits and chips (Volume 1, Chapters 2, 8, 12 and Volume I, 2, 8, 9, 10), swing-
ing doors (Volume I, Chapter 6), copying machines (Volume I, Chapter 9 and
Volume IT, Chapter 6), cantilever beams (Volume I, Chapter 3), space tele-
scopes {(Volume II, Chapter 5), air cylinders (Volume 1, Chapter 7}, protein
purifaction processes (Volume I, Chapter 10), fluid-mechanical devices
(Volume II, Chapters 4 and 6), new alloys (V. olume II, Chapter 7), graphics in-
terfaces (Volume I, Chapter 14), automobile transmissions {Volume I, Chapter
4), spatial layouts (Volume I, Chapter 13), elevators (Volume I, Chapter 11),
light-weight load-bearing structures (Volume I, Chapter 11), mechanical
linkages (Volume II, Chapter 12), buildings (Volume ITI, Chapter 12), etc.

What you will not find in this book is anything on Al-assisted software
design. On this point, our motivation is twofold: no book can (or should try to)
cover everything; and AT and software engineering has already been treated in a
pumber of edited collections {including [15, 307).

This book is an edited collection of key papers from the field of Al and
design. We have aimed at providing a state of the art description of the field that
has coverage and depth. Thus, this book should be of use to engineering desig-
ners, design tool builders and marketeers, and researchers in Al and design,
While a small number of other books have surveyed research on Al and design
at a particular institution (e.g., [12, 31]), this book fills a hole in the existing
literature because of its breadth.

The book is divided into three volumes, and a number of parts. This first
chapter provides a conceptual framework that integrates a number of themes that
run through all of the papers. It appears at the beginning of each of the three
volumes. Volume I contains Parts I and 11, Volume IT contains Parts I, IV, and
V, and Volume III contains Parts VI through IX.

Part I discusses issues arising in representing designs and design information.
Parts II and IIT discuss a variety of models of the design process; Part II dis-
cusses models of routine design, while Part III discusses innovative design
models. We felt that creative design models, such as they are in 1991, are still at
too preliminary a stage to be included here. However, [11] contains an interest-
ing collection of workshop papers on this subject. Parts IV and V talk about the
formalization of common sense knowledge (in engineering) that is useful in
many design tasks, and the reasoning techniques that accompany this
knowledge; Part IV discusses knowledge about physical systems, while Part V
gives several examples of formalized geometry knowledge. Part VI discusses
techniques for acquiring knowledge to extend or improve a knowledge-based
system. Part VII touches on the issue of building & knowledge-based design sys-
tem; in particular, it presents a number of commercially available tools that may
serve as modules within a larger knowledge-based system. Part VII contains
several articles on integrating design with the larger engineering process of
which it is a part; in particular, some articles focus on designing for manufac-
turability. Finally, Part IX contains a report on a workshop in which leaders of
the field discussed the state of the artin AT and Design.
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1.2. WHAT DOES AI HAVE TO OFFER TO
ENGINEERING DESIGN?

In order to answer this question, we will first examine the nature of engineer-
ing design a little more formally. Then we will briefly summarize some of the
major results in AT by viewing Al as a software engineering methodology. Next
we will look at what non-Al computer assistance is currently available, and thus
what gaps are left that represent opportunities for Al technology. Finally, we
outline how the AT software engineering methodology can be applied to the con-
struction of knowledge-based design tools.

1.2.1. Engineering Design: Product and Process

Engineering design involves mapping a specified function onto a (description

of a) realizable physical structure -- the designed artifact.  The desired func-
tion of the artifact is what it is supposed to do. The artifact’s physical structure is
the actual physical parts out of which it is made, and the part-whole relation-
ships among them. In order to be realizable, the described physical structure
must be capable of being assembled or fabricated. Due to restrictions on the
available assembly or fabrication process, the physical structure of the artifact is
often required to be expressed in some farget technology, which delimits the
kinds of parts from which it is built. A correct design is one whose physical
structure correctly implements the specified function.

Why is design usually not a classification task [6], that is, a matter of simply
looking up the right structure for a given function in (say) a parts catalog? The
main reason is that the mapping between function and structure is not simple.
For one thing, the connection between the function and the structure of an ar-
tifact may be an indirect one, that involves determining specified behavior (from
the specified function), determining actual behavior (of the physical structure),
and ensuring that these match. For another, specified functions are often very
complex and must be realized using complex organizations of a large number of
physical parts; these organizations often are not hierarchical, for the sake of
design quality. Finally, additional non-functional constraints or criteria further
complicate matters. We will now elaborate on these complications.

Some kinds of artifacts -- for example, napkin holders, coat hangers, and
bookcases - are relatively "inactive” in the sense that nothing is "moving" in-
side them. In contrast, the design of a physical system involves additionally
reasoning about the artifact’s behavior, both external and internal. The external
behavior of a system is what it does from the viewpoint of an outside observer.
Thus, an (analog) clock has hands that turn regularly. The internal behavior is

.//
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based on observing what the parts of the system do. Thus, in a clock, we may
see gears turning. Behavior need not be so visible: electrical flow, heat transmis-
sion, or force transfer are also forms of behavior.

In a physical system, behavior mediates function and structure. The function

v/ is achieved by the structure behaving in & certain way. If we just possessed the
physical structure of a clock, but had no idea of how it (or its parts) behaved, we
would have no way of telling that it achieves the function of telling time.

Not only in a physical system but also in designing a physical system, be-
havior tends to act as intermediary between function and structure. Associated

» with a specified function is a specified behavior; we would be able to tell time if
the angle of some physical structure changed in such a way that it was a function
of the time. Associated with a physical structure is its producible behavior; for -/
example, a gear will rurn, provided that some rotational force is applied to it. In
rough terms then, designing a physical system involves selecting (or refining) a
physical structure (or description thereof) in such a way that its producible be-
havior matches the specified behavior, and thus achieves the desired function.
Thus, we could successfully refine the "physical structure whose angle is a func-
tion of the hour" as either the hand on an electromechanical clock, or as the
shadow cast by a sundial.

Complex functions often require complex implementations. For example, a jet
aircraft consists of thousands of physical parts. Parts may interact in various v
ways. Thus the problems of designing the parts also interact, which complicates
the design process. Such interactions (among physical parts or among the
problems of designing those parts) can be classified according to their strength.

For instance, many parts of the aircraft (the wings, the engine, the body, etc.)
must, together, behave in such a way that the plane stays airborne; thus the sub-
problems of designing these parts can be said to strongly interact with respect to
this specification of global behavior. Non-functional requirements such as
global resource limitations or optimization criteria are another source of strong
interactions. For example, the total cost of the airplane may have to meet some
budget. Or the specification may call for the rate of fuel consumption of the
plane to be "fairly low". Not all ways of implementing some function may be
equally "good" with respect to some global criterion. The design process must
have some means for picking the best (or at least a relatively good) implemen-
tation alternative. Good implementations often involve structure-sharing, ie., »/
the mapping of several functions onto the same structure. For example, the part
of the phone which we pick up serves multiple functions: we speak to the other
person through it; we hear the other person through it; and it breaks the phone
connection when placed in the cradle. Important resources such as “total amount
of space or area” and "total cost" tend to used more economically through such
structure-sharing. On the other side of the coin, allowing structure-sharing com-
plicates both the representation of designs and the process of design.

That neighboring parts must fit together - both structurally and behaviorally

:
b
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-- exemplifies a kind of weak or local interaction./’l'hus the wings of the plane
must be attachable to the body; the required rate of fuel into the engine on the
left wing had better match the outgoing rate of fuel from the pump; and so forth.
The design process must be capable of ensuring that such constraints are met.

1.2.2. Artificial Intelligence as a Software Engineering
Methodology

Now that we’ve briefly examined engineering design, we will equally briefly
examine (the most relevant aspects of) Artificial Intelligence (AI).

Problem-solving as search. The late 1950s and the 1960s saw the development
of the search paradigm within the field of Artificial Intelligence. Books such as
"Computers and Thought” [10], which appeared in 1963, were full of descrip-
tions of various weak methods whose power lay in being able to view the solv-
ing of a particular kind of problem as search of a space. In the late 1960s, the
notion of heuristic search was developed, to account for the need to search large
spaces effectively.

Kaowledge as power. Nonetheless, most of the problems considered in those
early days were what are now commonly called "toy problems”. As the 1970s
began, many practitioners in the field were concerned that the weak methods,
though general, would never be powerful enough to solve real problems (e.z.,
medical diagnosis or computer configuration) effectively; the search spaces
would just be too large. Their main criticisms of the earlier work were that solv-
ing the toy examples required relatively little knowledge about the domain, and
that the weak methods required knowledge to be used in very restrictive and of-
ten very weak ways. (For example, in state space search, if knowledge about the
domain is to be used, it must be expressed as either operators or evalmation func-
tions, or else in the choice of the state space representation.) Solving real
problems requires extensive knowledge. The "weak method" critics took an en-
gineering approach, being primarily concerned with acquiring all the relevant
knowledge and engineering it into some usable form. Less emphasis was placed
on conforming the final program to fit some general problem-solving schema
(e.g., heuristic search); more concern was placed on just getting a system that
worked, and moreover, that would produce (measurably) "expert level” results.
Thus was born the “"expert systems" paradigm.

Evolution of new programming paradigms. Several list-processing languages
were developed in the late 1950s and early 1960s, most notably, LISP. The
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simple correspondence between searching a space for an acceptable solution and
picking an appropriate item in a list made the marriage of Al (as it was at that
time) and list-processing languages a natural one. Various dialects of LISP
evolved, and the developers of the main dialects began evolving programming
environments whose features made LISP programming more user-friendly (e.g..
procedural enrichments of a language that was originally purely functional;
debuggers; file packages; windows, menus, and list structure editors).

At the same time as the "expert systems" paradigm was developing, a new
wave of programming languages (often referred to as " Al languages") was arriv-
ing. Like the evolution of expert systems, this development phase seemed to be
motivated by the need for less general (but more powerful) languages than LISP.
Many of these languages were (part of) Ph.D. theses (e.g., MICROPLANNER

[42,47] and Guy Steele’s constraint language [35]). Often these languages
were built on top of the LISP language, a possibility greatly facilitated because
of the way LISP uniformally represents both data and process as lists. Often
these languages were never used in anything but the Ph.ID. dissertation for which
they were developed, because they were overly specialized or they were not
portable.

Exploring tradeoffs in generality and power. During the 1970s, at the same
time as many researchers were swinging to the "power” end of the "generality-
power" tradeoff curve in their explorations, others were striking a middle
ground. Some researchers, realizing the limitations of the weak methods, began
enriching the set of general building blocks out of which search algorithms
could be configured. New component types included: constraint reasoning sub-
systems, belief revision subsystems, libraries or knowledge bases of various
kinds; a variety of strategies for controlling problem-solving, etc. Other pro-
gramming language designers than those mentioned previously developed new,
specialized (but not overly specialized), and portable programming paradigms,
including logic programming languages, frame-based and object-oriented lan-
guages, and rule-based languages. Rule-based languages such as OPS5 arrived
on the scene at an opportune moment. In many cases, their marriage to “expert
systems" seemed to work well, because the knowledge acquired from observing
the behavior of domain experts often took the simple associational (stimulus-
response) form: “IF the problem is of type P, then the solution is of type 8."

Synthesis, consolidation and formalization. Al researchers of the late 1950s
and the 1960s posed the rhesis, "Generality is sufficient for problem-solving."
19705 researchers criticized this thesis, claiming the resulting methods were in-
sufficient for solving real problems, and responded with the anzithesis, "Power is
sufficient." However, that antithesis has been critiqued in turn: "Expert systems
are too brittle"; "special languages only work for the application for which they
were originally developed"; etc.
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INTRODUCTION 7

Since the early 1980s, Al seems to be in a period of synthesis. One useful
tool for illustrating the kind of synthetic framework that seems to be emerging
out of the last few decades of research is depicted in Figure 1-1. Rather than pit-
ting generality against power, or the "search paradigm” against the "expert sys-
tems" or "knowledge-based paradigm”, the framework unifies by providing
three different levels of abstraction for viewing the same "knowledge-based sys-
tem"; the knowledge level; the algorithm level; and the program level.

Knowledge Level

domain
theory K

architecture

Function Level

hierarchical
decomposer

select
programming
paradigms

Program Level

controller procedure

operator procedures

Figure 1-1: Rationally Reconstructed Knowledge-Based System Development

These three levels directly reflect the history of Al as we have just rationally
reconstructed it. The "knowledge level” view of a knowledge-based system
describes the knowledge that is nsed by and embedded in that system, The "al-
gorithm level" view describes the system as a search algorithm, configured out
of standard component types (e.g., generators, testers, patchers, constraint
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propagators, belief revisers, etc.). Finally the “program level” view expresses
the system in terms of the elements of existing programming paradigms (rules,
objects, procedures, etc.). Within the “algorithm level”, a spectrum of search al-
gorithms -- ranging from weak to strong methods -- can be created depending on
the choice of component configuration, and the choice of how knowledge (at the
knowledge level) is mapped into the search algorithm components. A similar set
of choices exists relative to the mapping of the “algorithm level” search al-
gorithms into "program level” knowledge-based systems.

Many of the ideas and insights of this period of synthesis can be viewed as ei-
ther: stressing the importance of distinguishing these levels (e.g., [6]); introduc-
ing criteria for evaluating systems at the different levels (e.g., epistemological
adequacy [17] at the knowledge level; (qualitative) heuristic adequacy [17} at
the algorithm level; and (quantitative) heuristic adequacy at the program level);
fleshing out the primitives at each level (e.g., ATMSs[7] or constraint
propagators [36] at the algorithm level); understanding and validating es-
tablished correspondences between entities at different levels (e.g., between
search algorithms and list-processing languages; or expert knowledge and rule-
based languages), or on discovering new correspondences.

AT as a software engineering methodology. Viewed as a software engineer-
ing methodology, AI works best for developing those knowledge-based systems
whose construction is usefully aided by creating explicit knowledge level and
function level abstractions. More specifically, the AI methodology works well
when:

» the problems addressed by the desired knowledge-based system are
ll-structured, and involve large or diverse types of knowledge
(when expressed at the knowledge fevel);

o that knowledge can be incorporated into an efficient search algo-
rithm, that can be viewed as a configuration of standard building
blocks for search algorithms;

o that search algorithm, in turn, can be implemented as an efficient
program, using currently available programming paradigms.
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1.2.3. Computer-aided Design

1.2.3.1. Opportunities for Al in computer-aided design

In many design areas (e.g., VLSI design or mechanical design), progress in
automating the design process passes through a sequence (or partial ordering) of
somewhat predictable stages (see Table 1-1). As we see it, design tool
developers proceed through the following stages: permitting design capture;
automating specific expert tasks; constructing unifying representations and sys-
tem architectures; modeling and automating the complete design process;
automatically controlling the design process; automatically re-using design ex-
perience; automaticalty improving tool performance. The central intuition is
that, with the passage of time, design tools play an increasingly more active role
in the design process. Note that the sequence is not meant to imply that the user
is (or should ever be) removed from the design process; instead, the user
receives increasingly greater assistance (and a more cooperative and powerful
design environment) with time. Table 1-2 lists some particular technological
contributions that have been made to design automation by academia and by in-

dustry.

Permitting design capture. In the beginning, graphical editors are created that
allow the user to enter, visualize, modify, and store mew designs, as well as
retrieve old designs, in a simple manner. This is such a universal starting point
for design automation in any new area that "CAD/CAM" (Computer-Aided
Design/Computer-Aided Manufacturing) tends to be used as a synonym for
fancy graphical, object-oriented interfaces. The development of these tools is
largely aided by techniques drawn from graphics and database management (in-
cluding such Al-related areas as deductive or object-oriented databases).

Automating the execution of expert tasks. As time passes, tool users become
less satisfied with a purely passive use of CAD. CAD tool builders identify
specific analysis and synthesis tasks which have been carefully delimited so as -
to be automatically executable (e.g., placement, routing, simulation). Al
research can make a contribution at this stage; the software engineering
methodology mentioned in Section 1.2.2 can facilitate the incremental creation,
testing, and development of knowledge-based systems which carry out the more
ill-structured analysis and synthesis tasks. (Well-structured tasks are carried out
by algorithms.)

Constracting unifying representations and system architectures. A problem
of integration arises; the set of available CAD tools is growing increasingly
richer, but the tools are diverse, as are the design representation languages they
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Table 1-1: Stages in the Evolution of Design Automation

DESIGN AUTOMATION GOAL PROBLEM AITISSUE

Permit design capture What functions does the Deductive or
user interface provide? object-oriented

databases

Build tools How to automate specialized Inference;

for specific tasks types of reasoning? Expert systems

Integrate tools How to communicate Represeatation;
between tools? Architectures

Manage versions Which task, tool, parameters? Search space

Modei design process ‘Which model is right Taxonomy of tasks and
for the task? corresponding methods

Find good design fast How to guide choices? Control

Inprove design system Where and how to improve? Machine learning

Reuse design knowledge How to acquire? Machine learning,
How fo re-use? Case-based reasoning

mfur{'—\;«- % CA%CJJ' lf,‘.'q{‘.i ;.wh

utilize. Al can enter again to contribute ideas about unifying representation lan-
guages (e.g., object-oriented languages) that enable the creation of "design
toolboxes™, and unifying system arc. itectures (e.g., blackboard architectures).

Modeling the design process. Having a single unified environment is good but
1ot sufficient. How can we guarantee that we are making the most of our avail-
able tools? Al contributes the notion of the design process as a search through a
space of alternative designs; the synthesis tools are used to help generate new
points in this space; the analysis tools are used to evaluate the consistency, cor-
rectness, and quality of these points; the idea of search is used to guarantee that
systematic progress is made in the use and re-use of the tools to generate new
designs or design versions.

/
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Table 1-2: Increasingly More Sophisticated Technological Contributions

From Industry and Academia

Technology University Industry Design
Antomation
Goal
Interactive graphics Sketchpad DAC-1 design
(MIT, 1963) {GM, early 60s) capture
Drafting (2D} Antocad™ design
ADE™™ capture
Solid modelers (31) BUILD (UK) FIDEAS™ design
(C$G. BREP) PADL (Rochester) ACIST™ capture
(see [29]) .
MicroStation™ + specific tools
efc.
Solid modelers ThingWorld [28] design
(super-quadrics, nonmanifold} Noodles (CMU) capture
Physical modelers ThingWorld design capture
(spatial + physics) + specific tools
Parametric modelers Work at DesignView™ (2D) design
{variational geometry MIT-CAD Lab ICONEX™ (2D) capture +
+ constraint management) PADL-2 PROJENGINEER™ (3D specific
¢U. Rochester) Vellum™ tools ‘
\
Semantic modeling + ICAD™ design capture ;
geometry (mostly wire frame) + WISDOM™ + specific tools
constraint management + DESIGN++™
layout
Logic synthesis Logic SynthesizerT™ design process
(ECAD) [18,27] model
(algorithmic)
Concept generators VEXED PRIDE design process
{routine design) DSPL (in-house) model
CONGEN
Concept generators BOGART ARGO design process
(innovative design) CADET (in-house) mockel
EDISON + cantrol
KRITIX.
ALADIN
DONTE
efc.,
Integrated frameworks DICE (MIT, WVU) PACT integrate tools,
(cooperative product PACT (Stanford) (HP, EIT, Lockheed) version
development IBDE (CMU) Falcon™ management

33D
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Controlling the design process. The priced paid for search is efficiency, as the
search space is generally quite large. Exhaustive search of the space is usually
intractable; however, a search which focuses its attention on restricted but
promising subspaces of the complete design space may trade away the guarantee
of an optimal solution (provided by exhaustive search), in return for an exponen-
tial decrease in overall design time.

How can a knowledge-based system control its search of a large design space
so that a satisfactory solution is produced in a reasonable amount of time? Good
control heuristics help.

Control heuristics may either be domain-specific or domain-independent.
“Spend much of the available design time optimizing the component that is a
bottleneck with respect to the most tightly restricted resource” is an example of a
domain-independent beuristic, while "Spend much of the available design time
optimizing the datapath” is a domain-specific version of this heuristic that ap-
plies to certain situations in the microprocessor design domain. Control heuris-
tics may address different control questions. Some address the question: "Which
area of the design should be worked on next?" while others address the question,
“What should I do there? How sbould I refine that area of the design?"

Automatically improving performance and automated reuse of design
experience. At this stage in the evolution of design automation in a design area,
most of the burden of routine design has been lifted from the end user; this has
been accomplished by reformulating this burden as one for the knowledge en-
gineers and system programmers. In turn, techniques from machine learning can
make life easier for the system builders themselves. In particular, they can build
a design tool that is incomplete or inefficient; the design tool can be augmented
by machine learning and case-based reasoning techniques that can extend the
knowledge in the system, or use its knowledge with ever greater efficacy.

1.2.3.2. The differing goals of CAD tool and Al researchers

A misunderstanding frequently arises between AT researchers who develop
experimental Computer-aided Design (CAD) tools, and traditional CAD tool
developers in a particular design area (e.g., VLSI or mechanical design) who
specialize in developing new design tools that will be usable in production mode
in the near-term future. The CAD tool developers accuse the Al researchers of
being too general, and of creating inefficient or toy knowledge-based systems.
On the other hand, the Al researchers criticize the traditional CAD tool resear-
chers of creating overly brittle systems.

Confusion arises because these two types of researchers (each of whom is
likely to be reading this book) do not share quite the same research goals, and
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each tends to judge the other with respect to their own community’s values.
Traditional CAD tool developers seek to reduce the effort in creating new
designs. Most Al researchers aim at reducing the effort in developing new
design tools.

Both research programs are worthy enterprises. The former goal requires the
design tools to be powerful. The latter requires the methodology for constructing
the tool (e.g., instantiation of a particular shell) to be general, and thus some-
times requires the design tool itself to be an instance of a general form rather
than a custom-built tool. This book describes results from both enterprises.

1.2.4. A Methodology for Building a Knowledge-based Design
Tool

In Section 1.2.1, we described the problem of design, and mentioned features
of the problem that indicate design is generally an ill-structured problem. We
then described Al as a three-level, software engineering methodology for
developing knowledge-based systems for solving ill-structured problems. In the
last section, we identified specific design automation tasks where such a
methodology can be most usefully applied. We now describe what the general
methodology looks like, when restricted to building knowledge-based design
systems.

The steps involved in the development of Al tools for engineering design are
shown in Table 1-3. The rest of this chapter will go into these steps in greater
detail. We indicate which levels are involved in each step (knowledge, funetion,
or program level), and which sections of this chapter will elaborate on that step.

The next few sections flesh out basic ideas relevant to understanding the
phases of this methedology. They also relate the later chapters of this book to
this methodology.

1.3. FORMALIZING THE DESIGN SPACE AND THE
DESIGN KNOWLEDGE BASE

Algorithms can be decomposed into passive data structures and active access
and update operations on these data structures. Similarly, models of design can
be partitioned into passive components -- the design space and the knowledge
base; and an active component -- the process that (efficiently) navigates through
that space, guided by the knowledge in the knowledge base. This section
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Table 1-3: Phases of Knowledge-based Tool Construction

PHASE LEVEL SECTION
Identify design task knowledge level 15.1
Fomnalize design space algorithm level 1.3
Formalize knowledge base algorithm level 13
Configure appropriate model algorithm level, 14,
of design process, based on Imowledge level 152
properties of design task
and design space
Tnstantiate by acquiring knowledge level, 152
and operationalizing algorithm level
knowledge
Implement alporithm level, 1.5.3
program level
Test all levels covered in
(validate and verify) individual chapters
Deploy covered in
individua! chapters
Improve all levels covered in
individual chapters

focuses on the nature and organization of design spaces and design knowledge
bases, while the next section explores the spectrum of design processes that

search such a space.

1.3.1. What Distinguishes a Design Search Space?

In order to characterize a (dynamically generated) search space, we must
define the nature of the points in that space, the relationships that can exist be-
tween points in the space, and how to generate new points from old ones.

Points in the design space. In a design space, the points can be design
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specificat:ioﬂéI or implementations. They can be at varying levels of abstraction,
Some points may only correspond to parts of a design (specification or im-
plementation). A single such point P1 might have associated with it:

* its parts: {P11,...PIn}, In the simplest case, these parts are simple
parameters; in general, they can be arbitrarily complex structures. .‘"

* constraints on it and its parts. .

» information about how its parts are connected.

Chapter 3 in Volume ] considers the case where a design can be represented
as a constraint graph, “whose nodes are parameters, and whose arcs represent
constraint relationships. Several design operations are casy to implement (in a
domain-independent manner), given such a representation: automatic generation
of parameter dependencies; evaluation of a constraint network; detection of
over- and under-constrained systems of constraints, and the identification and
correction of redundant and conflicting constraints. A few commercial tools,
such as Cognition’s MCAE™ and DesignView™ (see Volume I, Section
4.3.1), incorporate variations of Serrano’s constraint management system.
Chapter 4 in Volume I goes on to discuss how such a constraint network
representation can be used to design automobile transmissions. The application
of interval calculus methods to constraint satisfaction problems is treated in
Volume I, Chapter 5. These interval methods are used in a mechanical design
compiler, which accepts generic schematics and specifications for a wide variety
of designs, and returns catalog numbers for optimal implementations of the
schematics.

The design space as a whole. Some of the most basic relationships that can ex-
ist between points in the design space include:

® P2 is a part of P1.

* P2 is a refinement of P1 (where P1 and P2 are both specifications).
P2 consequently may be at a lower leve! of abstraction than P1.

* P2 is an implementation of P! (where P1 is a specification for and
P2 is a description of an artifact in the target technology).

}We use the word specification to denote a function or a goal that needs to be realized or
satisficed in the final design, e.g., "Design a land vehicle capable of going at least 100 mph
over sand."
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« P2 is an optimization of P1 (ie., P2 is better than P1 with respect to
some evaluatable criterion).

» P2 is a patch of P1L (ie., P1 contains a constraint violation that P2
does not).

These points can also be clustered into multiple levels of abstraction; for ex-
ample, in VLSI design, there might be a system level, a logic level, and a
geometric layout level. Figure 1-2 illustrates some of these relationships.
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Figure 1-2: The Design Space as an AND/OR Tree

- im,* _1,9,4 v [ 3 M b womiesd oy ,{ o{l,u:} . 37,.‘»{.(.
2 - y

Dynamically generating the design space. Some of the most basic operations
for generating new points in the design space from old ones include:
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s refining P1 into P2.

¢ implementing P1 as P2 in target technology T.

¢ decomposing Pl into {P11,...,P1n}. [
o optimizing P1 into P2 with respect to criteria O. /
¢ patching constraint violation V in P, yielding P2.

Chapter 2 in Volume I discusses the issues involved in representing all these
aspects of a design space. The points are illustrated in the context of VLSI

design.

1.3.2. What Distinguishes a Design Knowledge Base?

Often the parts that occur in designs (at any level of abstraction) can be
viewed as instances of a generic class. For example, microprocessors are usually
composed of generic parts such as ALUs, registers, busses, etc.

Such regularity can be exploited by maintaining a knowledge base of design -
object classes, and then viewing designs as configurations of instances of par-
ticular classes (e.g., a new microprocessor instance is constructed by creating an
instance of ALUS, Datapath3, Bus4, etc. and then connecting these object in-
stances together in a particular fashion). Design objects are also often
parameterized. A complete instance of such a parameterized object class is
created by assigning values to all the parameters.

In the standard object-oriented fashion, such design object classes may be or-
ganized hierarchically, thus reaping the standard benefits of inheritance. Design
process operations (such as refinement, optimization, etc.) may also be indexed
in a class-specific fashion (as methods), and thus, may also be inheritable.

The relation between a design space, a design knowledge base (of the kind
Just described), and a design process is as follows. A design process operation
such as refinement, patching, or optimization may generate a new point in the
design space from one or more old ones; the operation itself may involve creat-
ing new instances of design object classes from the design knowledge base,

Based on such an object-oriented representation of a design knowledge base,
Chapter 2 (Volume I discusses how to represent parameterized designs, design
histories, and task-specific experts. As examples of desirable properties for

; design representations, it suggests modularity, compaciness, flexibility permitted
in the design process (e.g. in allowing both top-down and bottom-up design, and
concurrent execution of design tasks), and extensibility; it describes how these
properties may be achieved.
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How does the design process know which design object class(es) should be
instantiated to carry out & particular design operation (e.g., refinement of part
P1)? One answer is to hardcode the association. = For example, a specific
refinement rule might eXpress the knowledge that whenever a part of type Pl is
being refined, it should be decomposed into paits of type {P11,..,Pln}. Or a
specific paiching rule might fix a specific type of constraint violation that com-
monly occurs in a specific kind of object. The design process models in Part 1
of this book take this hardcoded approach.

Another answer is to {reat this question as a problem that must be solved ex-
plicitly by the desigp process. For example, the process of patching a constraint
violation might actually ipvolve solving the problem of recognizing that a par-
ticular object in the design is an instance of (or similar to) some object in the
knowledge base, and then recognizing that the specified function of that object
has been disabled in some way (by the context of the object). Available patch-
ing methods associated with that object class can then be applied (or adapted).
Chapter 6 (Volume D) discusses how to organize a design knowledge base so
that this kind of "innovative" patching can occur.

1.4. MODELS OF THE DESIGN PROCESS
1.4.1. The Nature of Design Tasks

1.4.1.1. Design task dimensions

Design tasks canbe classified along several dimensions, including:

o available methods and knowledge;

e amount of unspecified (physical) structure;

e gap in abstraction levels between specification and implementation;
» complexity of interactions between subproblems; and

« amount and type of knowledge a system user can provide.

Available methods and knowledge. Is an appropriate method and/for suf-
ficient knowledge always available for choosing what task to address next in the
design process (e.g., what part to refine, what bug to fix, etc.)? Is knowledge of
a method available for executing that next task? If there is more than one way of
executing that task, is xnowledge or a method available for selecting the alter-
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native that will have the (globally) best outcome? The more (appropriate) .
knowledge and methods are available, the more routine the design task is. We
will focus our discussion on two basic types of knowledge and methods:
generative knowledge and methods, for generating new points in the design
space; and control knowledge and methods, for helping the design process to
converge efficiently on an acceptable design solution.

H sufficient knowledge and methods are dvailable for always direcily (ie.,
without problem-solving) generating the next point in the design space and for
converging on an acceptable design with little or no search, we will call the task
{ aroutine design task.

If the available knowledge and methods do allow for fairly rapid generation of
an acceptable solution, but only by:

* indirect generation of new points in the design space -- i.e., finding
a way to generate the next point in the design space involves a
problem-solving process; and/or

» indirect control of the search, i.e., via problem-solving,

that is -- by itself, the available (directly applicable) knowledge generates un-
acceptable designs -- we will call the task an innovative design task. .~

Finally, if a problem-solving process is required to construct the design space
in the first place, or if the best method available (given our current understand-
ing) is an unguided search through a very large space, we will call the task a

v creative design task.

We will call design process models capable of handling these three types of
design tasks routine, innovative, and creative design process models, respec-
tively. We discuss routine design processes in Section 1.4.2, and innovative
design processes in Section 1.4.3. We feel that creative design models, such as
they are, are still at too preliminary a stage to be included here. However,
[11] contains an interesting collection of workshop papers on this subject. Since
we have tied creative design to the creation of the proper design space, creative
design can also be viewed as a search through a space of design space represen- | ,
tations, and thus work on problem reformulation and representation design can |
be seen as relevant here (see, e.g., [1]).

The terms "routine”, "innovative”, and "creative design" were introduced in
[3], but were used in a somewhat different sense. Note that we use these terms
in reference to the fask and the process, but not the product. Thus, an innovative ./
design process (e.g., replay of design plans) might not necessarily produce a
product that is innovative with respect to the current market,

Amount of unspecified structure. Design maps function into (physical) struc-
ture. A design task often provides part of the (physical) structure of the design.
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Since the design process involves creating a complete (physical} structure, it is
also useful to identify what of the physical structure is left to be determined as a
measure of design task complexity [39]. Design tasks are usefully distinguished
according to what the unspecified structure looks like [40].

In structure synthesis tasks, the unspecified structure could potentially be any
composition of primitive parts, which may not exist in the knowledge/data base.
For example, the specified function might be a boolean function such as (and

(or x y) {(not z)). The physical structure might be any gate network
that implements the boolean function; no part of the gate network is given a
priori.

In structure configuration tasks, the unspecified structure is a configuration of
parts of pre-determined type, and connectors of pre-determined type. For ex-
ample, the physical structure might be a house floorplan containing some num-
ber of rooms, that can be connected by doors. For a particular floorplanning
problem, the number of rooms and-the size of the house might be given. In this
case, the unspecified structure would be the configuration of rooms and doors,

pius the values for room and door parameters.
' Finally, in parameler instantiation tasks, the unspecified structure is the set of
values for the parameters of each part. For example, the physical structure might
be the part decomposition for all air cylinders (Volume 1, Chapter 7). For a par-
ticular air cylinder design problem, the values for particular parameters (e.g., the
length of the cylinder) might be given. Then the unspecified structure would be
the values for all the remaining parameters.

Gap in abstraction levels between specification and implementation. In the
simplest case, the design specification and the design implementation are at the
same level of abstraction. This occurs, for example, when the only unspecified
structure is parameter values. In other cases, a single level separates the func-
tional specification from the target implementation level. That is, knowledge and
methods are available for directly mapping the pieces of the specification into
~ implementations; implementing a boolean function as a gate network is a simple
example. In the worst case, the design may have to be driven down through
several levels of abstraction before it is completed. For instance, in VI.SI design,
the initial specification might be of a digital system (e.g., a calculator or a
microprocessor), which is first refined into a “logic level” description (a gate
network), and then into a "layout level” description (of the actual geometry of
the chip).

Complexity of interactions between subproblems. On oné extreme (independ-
ent subproblems), the subproblems can all be solved independently, the solu-
tions can be composed easily, resulting in an acceptable global design. On the
other extreme, the subproblems strongly interact: a special (relatively rare) com-
bination of solutions to the subproblems is required, and combining these sola-
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tjons into an acceptable global solution may not be easy or quick. Complexity
increases when the number of interactions increases or when the type of inter- *
action becomes more complex.

Two major types of design interactions are worth distinguishing,

/ Compositional interactions arise when not all choice combinations (for refining

or implementing the different parts of the design) are (syntactically)} compos-
able. For example, in VLSI design, the output of one part may be "serial”, while
the input of another may be "parallel”; if the output of the one must feed the in-
put of the other, then the parts are not syntactically composable. Syntactic inter-
actions may be further subdivided into functional interactions index(Functional -
interactions) among parts of a functional decomposition (e.g., in VLSI design,
the "serial output/input” interaction) and physical interactions among parts of -/
the implementation (e.g., in VLSI design, wirel and wire3 on the chip must be
at least 3 lambda units apart).

/  Resource interactions arise when different choice combinations lead to dif-

ferent overall usage of one or more global resources (e.g., delay time, power, or
area in VLSI design). Different resources “"compose" in different ways: e.g.,
global part counts are related to local part counts by simple addition; global
delay time involves critical path analysis; etc. Y

Each interaction can be represented by a constraint. A local constraint only
constrains a single part; a semi-local constraint constrains a relatively small
number of parts; and a global constraint constrains a relatively large number of
parts. Compositional interactions tend to be represented by semi-local con-
straints (because the syntax rules for correctly composing parts tend to refer to a
small number of parts). Resource interactions tend to be represented by global
constraints (since the global resource usage tends to be a function of the whole
design).

Compositional interactions are typically weak interactions; they are usually

representable by semi-local constraints. In contrast, resource interactions are ; v

typically strong interactions, representable by global constraints.

Amount and type of knowledge a system user can provide. In considering the
nature of a design task, we will consider human users as knowledge sources, and
thus classify the design tasks addressed by a particular knowledge-based design
system as “routine” or "innovative" depending on how much knowledge (and
method) the system and the user rogether can provide during the overall design
process, Thus, even if the design system itself has no directly applicable control
knowledge, if the user makes choices at every decision point in a manner that
Ieads to rapid convergence on an acceptable solution, then the task is "routine".
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1.4.1.2. Design task decomposition

While sometimes the terms we have just introduced are appropriately applied
to the design task as a whole, it is often the case that "the design task" is a col-
lection of (themselves sometimes decomposable) subtasks. Whether a task is
considered a "routine design task" really depends on whether the subtasks are all
routine and on how strongly the subtasks interact; the same design task may
have relatively more and less routine parts to it. A category such as "parameter
instantiation task" may be aptly applied to one subtask, and be inappropriate for
another. Reference [5] makes some further points about task decomposition and v
associating different methods with different types of subtasks.

1.4.2. Models of Routine Design

1.4.2.1. Conventional routine design

In many cases, knowledge-based models of design are simply inappropriate,
or would consfitute overkill; conventional methods suffice for solving the task
(or subtask). Some design tasks can be cast as a set of linear constraints C(s) on
a set of real-valued variables, plus an objective function O(s) on these variables;
for such problems, the methods of linear programming apply. Other simple
design tasks can be cast a8 constraint satisfaction problems (CSPs) when: only
parameter values are left unspecified; each parameter has a discrete, finite range
of values; the constraints are unary or binary predicates on these parameters; and
there are no optimization criteria. Tn such a case, the constraint satisfaction
methods of [9] apply. Similarly, other types of design tasks are well-fitted to
other standard methods (integer programming, multi-objective optimization
techniques, AND/OR graph search [26], numerical analysis techniques, etc.}.
Many of these conventional methods have performance guarantees of various
sorts: linear programming and AND/OR graph search are guaranteed to find a
global optimuny; if the constraint network is a tree, constraint satisfaction
methods are guaranteed to run in polynomial time; etC.

1.4.2.2. Knowledge-based routine design

Viewed as a knowledge-based search, a routine design process is comprised 5
of several different types of basic operations: refinement, constraint processing
patching and optimization. Refinement and implementation operations generate

new, and less abstract points in the search space; constraint processing
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operations prune inconsistent alternatives from consideration by the search;
patching operations convert incorrect or sub-optimal designs into correct or
more nearly optimal designs; optimization operations convert sub-optimal
designs into designs that are more nearly optimal, with respect to some op-
timization criterion. Such operations might be stored as rules whose application
requires pattern-matching (e.g., as in the VEXED system -- Volume I, Chapter
8); or as plans or procedures that are directly indexed by the type of design part
to which they apply (e.g., as in the AIR-CYL system -- Volume I, Chapter 7).

1.4.2.3. Non-iterative, knowledge-hased routine design

For some design tasks, sufficient knowledge or methods are available that a
single pass (more or less) of top-down refinement -- possibly aided by constraint
processing, patching, and directly applicable control knowledge -- is generally
sufficient for converging on an acceptable design. This kind of design process
model is demonstrated in several systems discussed in this book, including AIR-
CYL (Volume 1, Chapter 7) and VEXED (Volume I, Chapter 8). In the best
case, applying this model requires mnning time linear in p*/, where p is the
number of parts in the original specification, and [ is the number of levels of
abstraction through which each such part must be refined. However, constraing
processing can slow things down, particularly if relatively global constraints are
being processed [13].

1.4.2.4. Iterative, knowledge-hased routine design

In other cases, the same kind of basic operations (refinement, constraint
processing, etc.) are involved, but several (but not an exponential number of)
iterations are generally required before an acceptable design is found. The need
for iteration often arises when mudtiple constraints and objectives must be
satisfied. A move in the design space that is good with respect to one constraint
©or objective may impair the satisfaction of another; tradeoffs may be necessary,
‘and quickly finding a reasonable tradeoff (e.g., something close to a pareto-
timal solution) generally requires extensive domain-specific knowledge.
everal forms of iteration are possible:

Chronological backiracking. A knowledge-poor method that is
generally not acceptabie for guaranteeing rapid convergence unless
the density of solutions in the design space is very high, or the
design space is very small. (Note, though, that "very small" need
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not mean a space of tens of designs, but - given the speed of
modern-day computing -- could be one containing thousands of
designs. See, e.g., Yolume 1, Chapter 4, where an acceptable design
for an automobile transmission is found using chronological back-
tracking,.

e Knowledge-directed backiracking. Dependency-directed backtrack-
ing possibly aided by advice or heuristics. PRIDE  (Volume I,
Chapter 9) and VT (V olume I, Chapter 11) both illustrate this kind
of iteration.

e Knowledge-directed hillclimbing. Tterative optimization or patching
of a design until all constraint violations have been repaired, and an
acceptable tradeoff has been met among all global optimality
criteria {e.g., area, power consumption, delay time, in VLSI design).

The knowledge used to select among different possible modifica-
tions could be an evalnation function, or a set of demain-specific
heuristics (CHIPPE, Volume I, Chapter 12), or the choice could be
made by the user (DESIGNER, Volume I, Chapter 14).

v Knowledge-directed problem re-structuring. It is not only possible

" to change the design solution but also the design problem, €.g., by
adding new constraints or objectives, or retracting or relaxing old
ones. As the original problem poser, the user is often made respon-
gible for such changes [BIOSEP (Volume I, Chapter 10) and
WRIGHT (Volume 1, Chapter 13)].

In the best case, applying this model requires running time polynomial in p*i,
where p is the number of parts in the original specification, and 1 is the number
of levels of abstraction through which each such part must be refined; ie., the
mumber of iterations is polynomial in p*I. In the worst case, the nimber of itera-
tions is exponential because whatever knowledge is guiding the search turns out
to be inadequate or inappropriate.

1.4.2.5. Routine design systems covered in this volume

Table 1-4 classifies along the dimensions we have been discussing the various
routine design systems described in later chapters of this book. Notice that most
of these routine design systems address design tasks involving parameter value
assignment or structuiie configuration (but not "from scratch” synthesis of the
entire structure).
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Table 1-4: Categorization of Systems and Methods
for Performing Routine Design

SYSTEM DESIGN  CHAPTER UNSPECIFIED DIRECTLY  SUBPROBLEM ABSTRACT-

OR TASK VOL.I) STRUCTURE APPLICABLE INTERACTIONSION LEVEL
METHOD OR PAPER ) KNOWLEDGE GAP
conventional many - parameter gonerative; algebraic 0
optimization simpie values control constraints
techniques  tasks (global)
cspP many Ref. parameter generative; works best for 0
methods simple 8] values some control semi-local
tasks consiraints
AIR-CYL.  air 7 parameter generative; weak 1
cylinders values patching ineractions
vT elevators 11 parameter gererative; strong 0
values knowledge- interactions
directed
backtracking
PRIDE copier 9 struciure geperative; works best for n
paper configuration  knowledge- weak
paths directed interactions
backtracking
VEXED circuits 8 entire structure  generative weak n
interactions
BIOSEP protein 10 structure generative weak n
purification configuration interactions
processes + cost function
CHIPPE VLSI 12 structure generative; weak 1
configuration  knowledge- interactions
directed + global resource
hillchimbing budgets
WRIGHT  spatial 13 structure generative; algebraic 1
0 layouts configuration  user control constraints
+ evaluation
function
graphic 14 struchure generative; mostly 1
interfaces configuration  wmser control semi-local

constraints
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1.4.3. Models of Innovative Design

In innovative design tasks, routine design is not possible because of missing
design knowledge. The missing knowledge might either be knowledge for
directly generating new points in the design space, or knowledge for directly
controlling the design space search. In this section, we will examine four dif-
ferent classes of innovative design. The first three focus (primarily) on missing
generative knowledge, while the last deals with missing conirol knowledge:

« Innovation via case-based reasoning
o Innovation via structural mutation

o Innovation by combining nultiple knowledge sources

!

[ Search convergence by explicit planning of the design process

The first three approaches can be used to create innovative designs; the last ap-
proach involves creating innovative design plans, or innovative reformulations
of the design problem.

1.4.3.1. Missing design knowledge

Why might relevant design knowledge be missing? One reason is that the
most naturally acquirable knowledge might not necessarily be in a directly ap-
plicable form. This is often so in case-based reasoning; old designs and design
process traces can be stored away fairly easily (if stored verbatim) in a case
database, but then this leaves the problem of how to use these old cases to help
solve a new design problem. _

A second reason is that it generally is impossible to store the large amount of
specific knowledge that would be necessary to adequately deal with all possible
design variations (e.g., varying functional specifications, objective criteria, etc.).
While some of this knowledge could be generalized, generalization often incurs
a price of some sort; €.8., the generalized knowledge is not quite operational and
must be made so at run-time; the (overly) generalized knowledge is not quite 3
correct in all the circumstances to which it appears (o be applicable; etc. Ad-
ditionally, some of the knowledge simply is idiosyncractic, and thus not
generalizable.

For this reason, deliberate engineering tradeoffs usually must be made in how
much directly applicable design knowledge to build into the system, and how
much to leave out, letting the system (or the user) cope with the missing %
knowledge. ]
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A third reason is that human beings themselves may not have the relevant
knowledge. Sometimes this is because the "structure to function” mapping is too
complex to invert; methods may be available for analyzing the behavior and
function of a given device, but not for taking a specified function and directly
producing a structure that realizes that function. A case-based approach is often

saken for such design tasks.

1.4.3.2. Case-based reasoning

Any case-based model of design must address the following issues:

e design case representation and organization
» design case storage
» design case retrieval

» design case adaptation and reuse

We will now say how three systems described in Volume I -- the BOGART
circuit design system (Chapter 2), the ARGO circuit design system (Chapter 3),
and the CADET system for designing fluid-mechanical devices (Chapter 4) --
handle these different issues. Chapter 5 (Volume II} analyzes case-based models
of design in greater detail.

Design case representation. In BOGART, the stored cases are design plans,
i.e., the steps used to incrementally refine a functional specification of a circuit
into a pass transistor network are recorded verbatim. In ARGO, the same design
session can yield several design cases, each at a different level of generality.
Cases are stored as rules ("macrorules”), wherein the precise conditions for
reuse of that case are stated explicitly. In CADET, each case involves four dif-
ferent representations: linguistic descriptions (i.e., <object attribute value>
tuples); functional block diagramming; causal graphs; and configuration spaces.

Design case storage. In BOGART, the cases were automatically stored ver-
batim (when the user so chose) after a session with the VEXED design system
(Volume I, Chapter 8). In ARGO, the design plan (a network of design steps and
dependencies among them) is partitioned into levels. By dropping away more
levels, more general plans are produced. Explanation-based generalization
[19] of these design plans is used to determine the conditions under which each
of these plans is applicable (which are then cached, along with the correspond-
ing plans). In CADET, the cases were manually entered (since the focus of the
CADET research was on case retrieval, and not case storage).
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Design case retrieval. Because ARGO stores cases in such a way that the con-
ditions for precise re-use are associated with them, retrieval of applicable cases
is not an issue; ARGO uses a heuristic t0 restrict its retrieval to maximally
specific cases. In BOGART, the user sclects a case conceived as being similar
to the current problem. In CADET, if no case directly matches the current
specification, transformations are applied to the specification of device behavior
until it resembles some case in the case database (e.g., some previously design
artifact actually produces the desired behavior or something similar to it). In
CADET, the specification may also be transformed in such a way that different
parts of it correspond to different cases in the case database; all these cases are
then retrieved (and the designs are composed).

Design case adaptation and reuse. In ARGO, reuse is trivial; a macrorule that
matches is guaranteed to be directly applicable to the matching context. The
transformations performed by CADET prior to retrieving a design permit direct
use of the designs in the retrieved cases. In a case reirieved by BOGART (a
design plan), some steps may apply to the current problem, while other parts
may not; replay of the design plan is used to determine which steps apply.
[23] is worth reading as a framework for case-based models of design such as

BOGART, whose modus operandi is design plan replay.

Summary. BOGART’s main innovation is in its method for design case reuse
(via replay); ARGO’s is in design case storage (macrorules with conditions of
applicability); CADET’s contribution is its metbod for design case retrieval (via
transforming the design problem). All of these systems make contributions to
the representation and organization of design cases that support their primary
contribution.

1.4.3.3. Innovation via structural mutation and analysis

Most directly applicable knowledge for generating new points in the design
space (either via refinement or modification) guarantees that something is being
held invariant; most commonly, the functionality of the old design is preserved.
If functionality-preserving transformations are not available, a weaker approach
is to apply transformations that modify the artifact’s (physical) structure in some
manner, and then analyze the resulting functionality. Such analysis may then
suggest further directions for modification until the desired functionality 1S
(re)achieved. Such modifications are also guided by performance criteria and
resource limitations.

One such approach is described in Volume II, Chapter 6. Here the problem is
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to find a way fo simplify a given, modular design (modular in that each struc-
tural part implements a different function) by identifying and exploiting
structure-sharing opportunities (i.e., ways to make a given structure achieve
multiple functions). Here the transformation for modifying the artifact’s struc-
ture is one that deletes some part of the structure. After a part has been deleted
(and hence a function has been unimplemented), other features of the remaining
structure are identified that can be perturbed to achieve the currently
animplemented function (while not ceasing to achieve the function(s) they are
already implementing). The identified features are then perturbed in the direc-
tion of better achieving the unimplemented function. For example, the handle of
a mug could be safely deleted if the remaining cylinder were sized and shaped in
such a way that it could be grasped by a human hand easily, and were made of a
material that was heat-insulating (and hence would not burn the hand) - e.g., a
styrofoam cup. Essential to this approach is knowledge that associates changes
in particular physical features of an artifact to the functions these (might)

" achieve.

If associations between (change of) physical structure and (change of) fanc-
. tion are not hardcoded, then they may have to be derived. Qualitative modeling
and reasoning of various kinds (e.g., qualitative simulation: see Volume II,
Chapter 10) can sometimes be used to derive such associations.

1.4.3.4. Exploiting multiple knowledge sources

We have just described systems that use a case database to generate new
designs, and other systems that use associations between structure and function
to do the same. For some design tasks, multiple sources of (such indirectly us-
able) knowledge may be available, and all potentially useful; it might even be
the case that solving the design problem requires integrating the advice of
several knowledge sources,

. Chapter 7 (Volume II) describes the ALADIN system, which helps design
new aluminum alloys that meet specified properties. ALADIN draws on several
sources of expertise to generate new points in the design space:

* a case database of previously designed alloys and their properties.

s if-then rules which associate structural changes (e.g., adding mag-
- nesium to the alloy) with functional changes (e.g., the value of the
“strength” property increases).

® mathematical models of physical properties.
tatistical methods for interpolation and extrapolation.
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1.4.3.5. Planning the design process

In a simple routine design scenario, the control questions that must be
answered along the way take relatively simple forms: which part of the design 10
work on next? What to do there (refine, implement, optimize, patch)? Of
several possible ways to do that, which to pick? Acquirable control knowledge
may be sufficient for answering the control questions as they arise.

However, for several reasons, a design process model can be more complex,
thus giving rise to new control questions, and hence to the need for a more com-
plex controller:

/ ® More methods and knowledge sources. Innovative design systems
can involve a diverse range of activities and draw on many sources

of knowledge. For example, the ALADIN system draws on multiple

knowledge sources, and consequently must also answer new gornfrol
questions: which knowledge source to consult next? How to com-
bine the outputs of several knowledge sources? etc.

\/ o Multiple objectives. Another source of control problems arises when
multiple objectives must be satisfied. New control questions in-
clude: With respect to which objective should the design be im-
proved next? Which part of the design should be redesigned to ef-

fect the improvement?

; Expensive design operations. Operations such as simulation (e.g.,
V1.SI chip simulation) ot analysis (e.g., finite element analysis) can
be sufficiently costly that their use should be carefully planned.

A global view: Control as planning. To be operational, any control stratcgy
must provide answers (o specific, local control questions of the kind just
described. However, the problem of control has a global goal in mind: Utilize
knowledge and methods s0 as 10 most rapidly converge on an acceptable solu-
tion. Hence we can think of the problem of control as a planning problem: con-
struct a relatively short design plan whose steps invoke various design methods
and draw on design knowledge, and which, when completely executed, results in
the creation of an acceptable design.

Stefik [36, 37] and Wilensky [45] gave the name meta-planning 10 this ap-
proach to control, since the design process itself is being explicitly represented
and reasoned about. Stefik’s MOLGEN system represented the design (2 plan  }
for a molecular genetics experiment) at multiple levels of abstraction. MOL- 3
GEN took a least commitment approach to refining the design through these 3
levels of abstraction. It also used a multi-layered control strategy, explicitly
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representing and modifying the design plan. The ALADIN system (Volume I,
Chapter 7) uses a very similar approach to managing the navigation through its

multiple spaces for designing aluminum alloys.

© Control as top-down refinement of design plans. When design operations
_(such as VLSI simulation) are expensive, one response is to creaie abstractions
. of these operations and much more cheaply construct plans for the design
process in the space of abstract operations, pick the best abstract plan, and then |
" refine it into an actual design plan (one whose execution would produce com-
plete designs, and accurate analyses). This approach can be viewed as a special
kind of meta-planning in which the planning method is top-down refinement
(often also called "hierarchical planning"). This approach has been applied to
VLSI design in the ADAM system (Volume II, Chapter 8).

But what is the "best” abstract plan? In ADAM, "best" means the one which
when executed, creates a design that comes closest to satisfying all of several
resource limitations {on area, speed, power, and design time). ADAM uses a
single weighted evaluation function of all the resource usages:

wl * area + w2 * speed + w3 * power + wd * design time

where wli+w2+w3+wi=1

to guide its search. ADAM first finds plans that construct designs which are op-
timal with respect to each of the individual resources; for instance, to do so for
"area" would involve setting wl = 1, and w2 = w3 = w4 =0. Based on the the
difference between the costs of the resulting designs and the specified budgets,
ADAM uses linear interpolation to readjust the weights on the evaluation func-
tion. It then replans.

Exploratory design: Control as hiliclimbing in the space of probhlem
- formulations. The following hypothesis (we will call it the routine design
- hypothesis) is one way of viewing the relationship between an innovative design
~ problem and a routine design problem:

If the design problem is appropriately stractured and contains encugh
detail (i.e., if we are "looking at the problem right"), then a single pass of a
simple routine design process should produce an acceptable design (if one
exists).

The control strategy we will next describe, called exploratory design, is ap-
~ propriate for those problems where the initial design problem is not ap-
- propriately structured or annotated (i.e., it is an innovative design problem). We




32 TONG AND SRIRAM

call this "exploratory design” because our intuition is that human designers
handie problems that are complex in novel ways by spending their initial time
finding a good way to look at the problem.

Models of routine design involve a search purely in the space of designs. In
exploratory design, the problem and the solution co-evolve. Exploratory design
hiliclimbs in the space of problem formulations (the "outer loop" of the method),
getting feedback for adjusting the problem formulation from analyzing how the
candidate designs generated so far (by the "inner loop” of routine design) fail to
be acceptable.

The DONTE system (Volume II, Chapter 9) performs such hillclimbing in
the space of circuit design problem formulations using top-down refinement,
constraint processing, and design patching operations in its "inner loop". The
kind of problem reformulation operations it performs there are: macro-decision
formation, which imposes a hierarchical structure on a relatively flat problem

" decomposition; budgeting, which adds-a-new-budget-constraint o every design

component; re-budgeting, which may adjust such constraints in several com-
ponents; rough design, which assigns estimates of resource usage to various
parts of the design; and criticality analysis which (re)assesses bow (relatively)
difficult the various subproblems are to solve (given their current budgets, etc.).

1.4.3.6. Innovative design systems covered in this volusne

Table 1-5 classifies along the dimensions we discussed earlier the various in-
novative design systems described in later chapters of this book. Notice that
most of these innovative design systems address design tasks involving syn-
thesis of the entire structure.

1.4.4. Qualitative Reasoning about Artifacts during Design

The mapping of a knowledge level specification of a design system into am
algorithm level search algorithm can draw on formally represented bodies of
generally useful "common sense” knowledge and procedures relevant to reason-
ing about the physical artifacts being designed. We now describe two kinds of 7%
such knowledge: knowledge about physical systems; and knowledge about E
geometry. With respect to codification of "common sense” knowledge, the CYC 3
project [14] represents an alternate and possibly complementary approach to 3
those described here. 1
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Table 1-5: Categorization of Systems and Methods
for Performing Innovative Design

SYSTEM DESIGN CHAPTER UNSPEC. ABSTR. ~ GENERATION CONTROL  WHAT
OR TASK (VOL.ID  STRUC. LEVEL PROBLEMS PROBLEMS ISINN-
METHOD GAP ADDRESSED ADDRESSED OVATIVE

BOGART  circuits 2 entire 1 how to replay retrieved case design

stricture
ARGO circuits 3 entire 1 how to store design
: structure cases 5o
generation
is easy
CADET  fluid- 4 entire n how to design
mechanical structure identify
devices similar cases
FUNCTION fluid- 6 none 0 how to design
SHARING mechanical identify
devices function-sharing
possibikities
ALADIN  aluminum 7 entire n how to use multiple knowledge  design
alloys structure  spaces sources to generate new design
ADAM VLSI 8 entire n how to find design
structure promising plan
design plan
DONTE  circuiis 9 entire n how to find design
structure good problem  problem

decomposition, reformula-
budget aflocation, tion
resource usage

estimations

1.4.4.1. Qualitative reasoning about physical systems during design

Functional specifications for physical systems often take the form of stipulat-
ing a particular relationship between behavioral parameters, e.g., the output rota-
tion of a rotation transmitter must be 30 times as fast as the input rotation. It is
rarely the case that a single part (e.g., a single gear pair) is capable of directly
. achieving the specified relationship. Instead, a series of interacting components
. may be needed. This is especially the case when the type of the behavioral
- parameter changes: e.g., the input is a rotational speed, but the output is a rate of
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up-and-down movement. The network of interacting behavioral parameters may
necessarily include feedback loops, €., when the specified relationship defines
a self-regulating device (e.g., a change in one variable should result in a cor-
responding change in the other).

Williams has proposed a design process mode!l for such problems called
interaction-based invention:

Javention involves constructing a topology of interactions that both
produces the desired behavior and makes evident a topology of physical
devices that implements those interactions [46].

One of the key steps in this process is verifying that the interactions in the
constructed interaction topology actually "compose” to produce the specified in-
teraction. Carrying out this step (and satisfying its representational needs, i.e.,
providing an adequate representation of the causal and temporal features of each

_interaction). is particularly difficult when the topology is complex (e.g., as in
most circuits that contain feedback loops). Chapter 10 (Volume II)-discusses — - |-

how to adequately represeint such interactions in complex physical systems (such
as analog circuits with feedback loops), and how o qualitatively analyze the
global behavior of these Systems.

1.4.4.2. Qualitative reasoning about geometry in design

Geometry-constrained synthesis. Many design tasks involve geometry in
one way or another in their functional specifications or domain knowledge. In
the simplest of cases, the role geometry plays is purely static, placing restrictions
on the boundaries of the artifact, points of attachment of parts of the artifact, etc.
The WRIGHT system described in Chapter 13 (Volume 1) handles a subclass
of such spatial placement problems.

The synthesis of small load-bearing structures illustrates & more complex role
of geometry: forces (i.e., the loads) are positioned at certain points in space; 4
single structure must be synthesized that is both stable and capable of bearing
the loads (and that does not occupy any "obstacle” regions of space). Chapter 11
(Volume II) describes the MOSAIC system, which synthesizes such load-
bearing structures using 2 design process model that performs problem abstrac-
tion, problem decomposition, and iterative re-design.

Another geometric complication shows up in kinematic synthesis, the SyI-
thesis of pbysical structures that move in ways that satisfies certain restrictions
on motion in space. Chapter 12 (Volume II) considers the problem of designing 2
linkages (e.g., door hinges, aircraft landing gear, cranes, etc.}, given constraints §
on specific points through which the linkage nmust pass (perhaps in a particular §
order), number of straight line segments in the path of motion, etC. In the TLA
system, the user selects a linkage from a case database of four-bar linkages: §
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looking for those that have features resembling the problem specifications. Op-
timization techniques are then used to adapt the known case to the current
tifoblem; user intervention helps such techniques avoid getting stuck in local
minima. :

Joskowicz (Volume II, Chapter 13) also describes an approach to kinematic
synthesis. Mechanisms, retrieved from either a catalog or a case database, are
considered during artifact redesign. Retrieved mechanisms shouid ideally be
kinematically equivalent to the current design. Joskowicz describes a method for
comparing two mechanisms for kinematic equivalence, that involves trying to
find a common abstraction of both. This same mechanism comparison technique
is used to organize the case database (for the purpose of efficient retrieval) into
classes of kinematically equivalent mechanisms.

Geometry-based analysis. That designed artifacts have geometric features
means that some of the analysis processes performed during design will involve
geometric reasoning, including: static and dynamic analysis of stresses (based
on shape), and kinematic simulation of mechanisms.

The conventional approach to analyzing stress is finite element analysis.
However, this method requires a grid as an input, and which grid is best varies
with the problem. In contrast, Chapter 14 (Volume II) describes an approach to
stress analysis that geometrically partitions an object into regions in such a way
that the object parts have shapes (e.g., a plate with a hole in it) resembling
kmown cases (e.g., a plate without a hole in it). These known cases have as-
sociated (pre-computed) stress analyses, which are then used as part of the stress
analysis data for the overall object.

One method for kinematic simulation is described in Chapter 13 (Volume II).
First, local behaviors are computed from two-dimensional configuration spaces,
defined by the objects’ degrees of freedom. Global behaviors are then deter-
mined by composing pairwise local behaviors.

L5. %%IPING A KNOWLEDGE-BASED DESIGN

The actual construction of a new knowledge-based design tool goes through
three basic phases:

* Identify the design task
* Configure and instantiate the design process model
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e Implement the design process model

1.5.1. Identifying the Design Task

Identifying the design task involves defining the task and classifying it.

1.5.1.1. Knowledge acquisition to define the design task

To define a design task, we must acquire knowledge defining:

« the class of problems that can be solved;

e the class of candidate solutions that contains a set of acceptable
solutions to the problem;

e the domain theory, the body of domain-specific knowledge that is
. accessed in solving such problems, and constrains what is con-
/ sidered to be an acceptable solution.

How can such design knowledge be either easily acquired from domain ex-
perts, or otherwise automatically added to the knowledge base?

Graphical interfaces. Chapter 2 (Volume III) discusses the advantages of using
graphical interfaces in acquiring design knowledge from experts. In particular,
the knowledge is acquired in the form of decision trees. These trees are then
mapped into expert rules in OPS5. The complete process is illustrated by ac-
quiring and compiling knowledge from experis for bearing selection.

Knowledge acquisition for specific design process models. Another way to
simplify knowledge acquisition is to tailor a particular knowledge acquisition  §
method to a specific design model. For example, the SALT system (Volume I, 1
Chapter 11) specializes in acquiring knowledge for a design system that itera- 4
tively modifies a design. e

SALT first acquires a graph whose nodes are design ioputs, design 3
parameters, or design constraints and whose edges €xpress various relationships
between these. SALT then acquires three types of knowledge that are indexed
off the graph nodes: knowledge for proposing a design extension (specifying & 3
design parameter), knowledge for identifying 2 constraint, and knowledge for 4
proposing a fix to a constraint violation. SALT has a schema for each type of %
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knowledge, and prompts the user with questions whose answers fill in the ap-
propriate schema. SALT also has techniques for analyzing the completeness and
consistency of the knowledge base. The SALT system was used to acquire the
knowledge in the VT system.

"Case-based reasoning. In Section 1.4.3.2, we described case-based reasoning
-as a particular model of innovative design. Because case-based reasoning in-
volves storage of design cases from previous design system sessions, it
represents another way of adding "new" knowledge to the knowledge base.

As mentioned previously, the stored knowledge can range in generality from
design plans that are stored verbatim (as in the BOGART system, Volume II,
Chapter 2), to automatically generalized knowledge (as in the ARGO system of
Volume M, Chapter 3).

1.5.1.2. Classifying a design task

As mentioned earlier, design tasks can be classified along several dimensions,
including:

» available methods and knowledge

* gap in abstraction levels between specification and implementation

« amount of unspecified (physical) structure

* complexity of interactions between subproblems; and

¢ amount and type of knowledge a system user can provide

1.5.2. Configuring and Instantiating the Design Process Model

Classification of a design task identifies important features of that task. Dif-
ferent features suggest different design process models. Tables 1-4 and 1-5 sug-
gest, by example, some of the correspondences.
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1.5.3. Implementing the Design Process Model

Once a design process model is determined, the next step is to map the design
process model onto the program level (see Figure 1-1). “Maxims" pertinent {0
carrying out this mapping include:

1. Code in an appropriate programming language, such as C4++,
LISP, OPS5, KEE ™. Most of the papers in Volume 1 and Volume
| 1L, as well as Chapter 7 in Volume TII, take this approach.

I 9. Use a commercial tool that provides some support for design ar-
tifact representation; implement appropriate extensions. Chapters
3,4,5and 6in Volume TII follow this path.

3. Develop a domain-independent -shell-that implements the design

process model(s) and instantiate the shell for a particular applica-
tion.

4. Use a knowledge compiler 0 generate special-purpose procedures
for efficiently processing particular (and generally domain-
specific) subtasks of the overall design task.

1.53.1. Commercially available tools

There are two kinds of tools available in the commercial market place for
civil/mechanical engineering applications (see Table 1-2):

1. Parametric modelers, which provide constraint processing
capabilities to geometric modelers. An application utilizing a
parameiric modeler (DesignViewm) and a knowledge-based pro-
gramming tool (NEXPERTTM) for designing a product and form-
ing sequence for cold forging is described in Chapter 4 (Volume
). We have included a list of commercial tool vendors in Ap-
pendix A at the end of this chapter.

2. Design representation frameworks, which provide additional
layers over xnowledge representation languages. Typically these
layers support the following activities:

 Representation of engineering entities, including composite
objects;
e Geometric modeling;
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e Constraint managenient;

e Access to external programs, such as engineering databases;

e Programming language support (current tools are im-
plemented in LISP); and

* Rule-based inferencing.

Applications implemented in three commercially available tools
are described in Volume III, Chapters 3 (ICADTM) 4
(DesignView TM and NEXPERT ObjectM), 5 (Design++T™), and
6 (Concept Modeller™),

1.5.3.2. Domain-independent shells

Domain-independent shells, in addition to representation and programming

language support, provide desiga process models as problem solving strategies.

. Applications can be built by adding domain-specific knowledge. Many of the

routine design systems described in Volume I have evolved into domain-
independent shells. These systems view design as:

Hierarchical Refinement + Constraint Propagation + ..

and provide knowledge editing facilities for inputting design plans, goals, ar-
- tifacts, and constraints. Table 1-6 summarizes several domain-independent
. shells, developed in the United States. Several organizations in other countries
.. are attempting to build such tools, e.g., LEOSYS™ | developed by Olivetti
: Computers, Italy.

1.5.3.3. Knowledge compilers

In principle, knowledge compilers can be used to create (at compile time)
those components of the design system that are not easily viewable as instantia-
tions of domain-independent "shell" components, and that are not one of the
commercially available tools (e.g., parametric modellers or design represen-
tation frameworks). Often the compiled components handle particular, domain-
specific tasks such as maze routing [32], house floorplanning [44], or synthesis
of gear chains [24]. It is also possible to use knowledge compilers to optimize
Components that originated as shell instantiations.

Some compilers are quite specialized; for example, the ELF system
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Table 1-6: Domain-Independent Shelis that Implement
Hierarchical Refinement and Constraint Propagation

SHELL/ PREDECESSOR/ REP. LANGUAGE! MACHINE DEPARTMENT/

REFERENCE DOMAIN BASE LANG. OR 08 PLACE

DESCRIBE FRIDE LOOPS XEROX Only Inhouse

(201 Paper Handling LISP

EDESYN HI-RISE FRAMEKIT Usix Civil Engre. |

{16} Buildings 115P CMU

DSPL AIR-CYL LISP Unix Comp. Sci |

[4] Air Cy]indel‘s osU & WPL l
I

EVEXED VEXED STROBE KFROX Comp. Sci. |

[38] VLSI LISP Rutgers

DIDS MICON Ct Unix EECS

21 Computers C Univ. Michigan

CONGEN ALL-RISE Cirt Uaix Civil Engrg.

341 Buildings C MLT.

[32] specializes in compiling global routers, for varying VLSL technologies.
The KBSDE compiler [44] and the constraint compiler of the WRIGHT systent
(Volume 1, Chapter 13) address a different and somewhat proader class of
knowledge-based Systes for spatial configuration tasks. The DIOGENES
compiler [24] addresses the still broader class of heuristic search algorithms. "~
These compilers appear to obey the standard power/generality tradeoff. The
models of knowledge compilation also grow progressively weaker as the breadth
widens, culminating in such weak (ie., relatively unrestricted) models as: & £
ransformational model of knowledge compilation [22] or 2 mode! of knowledge
compilation as formal derivation.

All the compilers just mentioned are research prototypes, and are thus no
commercially available. Nonetheless, we mention this technology because of its
potential importance in the not too distant future. In the meantime, human pro
gramming gkills will have to suffice.
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1.6. DESIGN AS PART OF A LARGER ENGINEERING
PROCESS

£ T e

It is important to view design in the perspective of the overall engineering
process, which involves several phases: market studies, conceptualization,
research and development, design, manufacturing, testing, maintenance, and
marketing (see Figure 1-3). In this process people from various disciplines inter-
act to produce the product.

MARKET
SURVEY

CONCEPTUALIZATION |

RESEARCH &
DESIGN DEVELOPMENT
MANUFACTURING TESTING
MAINTENANCE MARKETING

Figure 1-3: Engineering a Product

(Bent arrows indicate that the process is iterative)
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In traditional product development, the lack of proper collaboration and in-
tegration between various engineering disciplines poses several problems, as €x-
pounded by the following Business Week (April 30, 1990, Page 111) clip [see
Figure 1-4 for a typical scenario in the AEC industry].

The present method of product development is like a relay race. The
research or marketing department comes up with a product idea and hands it
off to design. Design engineers craft a blueprint and a hand-built prototype.
Then, they throw the design nover the wall" to manufacturing, where produc-
tion engineers struggle to bring the blueprint to life. Often this proves $O
daunting that the blueprint has to be kicked back for revision, and the relay
must be run again - and this can happen over and over. Once everything
seems set, the purchasing department calls for bids on the necessary
materials, parts, and factory equipment -- stuff that can take months or even
years to get. Worst of all, a design glitch may turn up after all these wheels
are in motion. Then, everything grinds to a halt until yet another so-called

engineering change order is'made:

Architect

Figure 1-4: Over the Wall Engineering
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Several companies have addressed the above problem by resorting to a more
flexible methodology, which involves a collaborative effort during the entire life
cycle of the product. It is claimed (Business Week, April 1990) that this
approach? results in reduced development times, fewer engineering changes, and
better overall quality. The importance of this approach has been recognized by
the Department of Defense, which initiated a major effort -- the DARPA Initia-
tive in Concurrent Engineering (DARPA DICE) -- with funding in the millions
of dollars.

It is conceivable that the current cost trends in computer hardware will make
it possible for every engineer to have access to a high performance engineering
workstation in the near future. The "over the wall" approach will probably be
replaced by a network of computers and users, as shown in Figure 1-5; in the
figure we use the term agent to denote the combination of a human user and a
computer,

The following is a list of issues that we consider important for computer-aided
integrated and cooperative product development.

1. Frameworks, which deal with problem solving architectures,

2. Organizational issues, which investigate strategies for organizing
engineering activities for effective utilization of computer-aided
tools.

3. Negotiation techniques, which deal with conflict detection and /
resolution between various agents.

4. Transaction management issues, which deal with the interaction /
issues between the agents and the central communication medium.

5. Design methods, which deal with techniques utilized by in-
dividual agents.

6. Visualization techniques, which include user interfaces and
physical modeling techniques.

Several papers in Volume IIT address some of the above issues; [33] contains ad-
‘gitional papers in this area. Chapters 7 and 8, Volume I1I, discuss the DFMA

the ECMG frameworks, respectively, that bring manufacturability
wledge into the early design phases. The manufacturing knowledge is
htly integrated into the the design framework. The Engineous system,
ibed in Volume II, Chapter 9, is a generic shell that combines knowledge-

Moo "o

oncurrent engineering”, "collaborative product development”, “cooperative product
opment”, “integrated product development” and “simultaneous engineering” are different
€8 used to connote this approach.
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Designer

"

\. Architect /

Figure 1-5: Modern View of Product Development

Fabricator

based experi systems, numerical optimization, and genetic algorithms for

product design.

While the above systems are closely coupled architectures, the systems
described in Chapters 10, 11, and 12 (Volume TH) are loosely coupled and
reflect the architecture shown in Figure 1-5. A multi-level and a multi-modal ar-
chitecture, DMA, that supports casy integration of various design/manufacture
CAD systems is proposed in Chapter 10 (Volume ITI). The design module sup-
ports an axiomatic approach to design [41]. The manufacture module coniains
manufactability knowledge, such as assembly sequencing, etc.

A dual design partner scheme is proposed in Chapter 11 (Volume TIT). This
scheme supports (wo competing system behaviors. One expert machine -- the
stabilizer -- resists change and always presents a conservative hypothetical
model of the product. The other expert machine -~ the innovator -- strives for
well calculated and justified alterna ive hypothetical models of the product. The
dual partner scheme is being implemented using the blackboard architectur®

[25].
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The DICE project (Volume III, Chapter 12) implements a blackboard ar-
chitecture over an object-oriented database management system; thus the black-
board and the object-store are tightly integrated. In addition, the objects in the
blackboard have behavior associated with them. Hence, the need for a sophis-
ticated scheduler — as provided in the traditional blackboard systems -- is ob-
viated. The DICE project also incorporates comprehensive transaction and ver-
sion management mechanisms. The DICE version described in this volume was
implemented in Common LISP. Other implementations also exist in the
OPAL/GEMSTONE and C++/ONTOQS environments.

Table 1-7 summarizes the various efforts in integrated design systems.

Table 1-7: Summary of Integrated Design Frameworks

© SYSTEM CHAPTER FEATURES NO.LEVELS STATUS
% (VOL. IH)
DFMA 7 Tightly coupled 1 In-house use
ECMG 8 Tightly coupled; 1 Commercially
Domain-independent avatlable
9 Tightly coupled 1 In-house use
expert systems;
genetic algorithms;
optimization
11 Loosely coupled; n Prototype

Blackboard; database

10 Loosely coupled n Prototype

12 Loosely coupled; n Profotype
Blackboard; object-oriented
databases; negotiation;
transaction management
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1.7. SUMMARY

In this overview chapter, we have presented a framework for helping to un-
derstand the field of "Al in Engineering Design" in general, and the papers in
this collection, in particular.

Applying Al software engineering methodology to Engineering Design
problems. We first considered "Bngineering Design” and * Artificial Intel-
ligence" as separate disciplines, the former providing special kinds of itl-
structured problems, and the latter providing a methodology for developing
knowledge-based systems that effectively solve certain types of ill-structured
problems.

Design problems are ill-structured in that the mapping of desired functionality

onto a {(physical) structure that correctly implements it is generaily not
straightforward. Furthermore, most design problems call for not only a correct
design but a good design — good with respect to one or more (possibly ill-
defined) metrics (e.8., cost, area, volume, power consumption, etc.); this further
complicates the mapping, thereby decreasing the likelihood that a simple (poly-
nomial time) algorithm will suffice for carrying out the mapping, and increasing
the likelihood that some degree of search (e.8., generate-and-test) will be neces-
sary. Finally, the design problem representation itself may begin its life as an ill-
structured set of "requirements” and only gradually (enabled by feedback from
actnal design experience) evolve into a set of formal " specifications”.

For the purposes of this book, we have described Artificial Intelligence as a
discipline that provides a multi-level methodology for engipeering knowledge-
based problem-solving systems. In particular, a knowledge level specification of
the system (and the class of problerns it must solve) is mapped into an algorithm
level description of an efficient search algorithm for efficiently and acceptably
solving that class of problems. That (simulatable) algorithm description is then
mapped into an actual piece of code at the program level, using one or mMore
programming para igms (e.g., procedural programming, rule-based program-
ming, object-oriented programming), sheils (e.g., VP-EXPERTT™), or commer-
cially available subsystems (e.g., an ATMS in KEETM). The application of Al
to Engineering Design thus looks like a specialization of this software engineer-
ing methodology to: design tasks (specified at the "knowledge level"); design
process models (described at the "algorithm level"); and design programs built
from shells, commercially available design subsystems, and manually com-
structed code (implemented at the "program level”).

Mapping a knowledge level specification for a design system into 8
algorithm-level search algorithm. In considering mapping a knowledge 19V%1
specification for a design system. into an algorithm-level search algorithm, lt;,iﬁ
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useful to decompose the algorithm into passive and active components. One pas-
sive component is the design space to be searched. The active design com-
ponents are the various functional components of the design process model (e.g.,
refinement, hillclimbing, constraint propagation, backtracking, etc.), which, in
effect, generate the design space and navigate through it. These active com-
poaents draw upon another passive component, declaratively represented design
knowledge, interpreting this knowledge at run time (e.g., to estimate the cost of a
particular design, to choose between several design alternatives, etc.).

The same piece of knowledge can be embedded into an algorithm in a variety
of ways, with varying degrees of effectiveness. The most effective way to map
available design knowledge into the algorithm-level search algorithm is to care-
fully engineer the design space itself, so that it -- ¢ priori -- will contain (when
generated at run-time) as few incorrect or poor designs as possible. The next
most effective way to use design knowledge is to compile it into the active com-
ponents of the search algorithm (e.g., creating customized routines for ef-
ficiently performing special tasks such as routing, placement, estimation,
simulation, etc.) The least effective (though sometimes easiest, and sometimes
necessary) way to use design knowledge is to represent it declaratively (e.g., as
is often the case in shells), and then inferpret it at run time.

Other factors also come into consideration when mapping a knowledge level
specification of a design system into an algorithm-level search algorithm.
Design tasks can be categorized along various dimensions; different search al-

- gorithms will be appropriate for different types of design tasks. Useful dimen-
- gions for taxonomizing design tasks include: available methods and knowledge
- (addressing that task); gap in abstraction levels between specification and im-
lementation; amount of unspecified (physical) structure; and amount and type
of knowledge a system user can provide.
“Of primary importance in distinguishing types of design tasks is the amount
types of available knowledge (and the form in which the knowledge is avail-
le). The more design knowledge available in the right form, the more routine
"direct") a design process can be used (involving a top-down refinement
or hillclimbing process that converges on an acceptable design with Iittle or
arch). Any missing knowledge or knowledge in the wrong form or incor-
knowledge must be compensated for. Such innovative design problems can
addressed by various "indirect” techniques such as case-based reasoning,
tural mutation, combining multiple knowledge sources, and explicit plan-
f the design process.
g1 processes can be non-routine and indirect in the sense that generating
oints in the design space may require an explicit problem-solving process,
‘than the direct application of a single procedure or the direct interpretation
gle piece of knowledge. Using case-based reasoning to generate new
In the design space is usnally indirect in that it requires nontrivial
§ of design case selection, adaptation, and reuse. Using structural muta-
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tion to generate new points can be indirect in the sense that the quality and even
the functionality of the mutations may pot be knowable a priori, may require a
problem-solving process (e.g., qualitative or numerical simulation) to determine,
and may lead to a search through the space of possible mutations for a correct
and good ong. Using multiple knowledge sources to generate new points in the
design space is usually indirect in that integrating partial solutions is a nontrivial
problem-solving process.

Design processes can also be non-routine and indirect in the sense that control
of the search is indirect -- it requires an explicit problem-solving process, rather
than merely the direct application of a simple control procedure or the direct in-
terpretation of a single piece of control knowledge to decide what to do next.
The design search control problem can be usefully viewed as a planning
problem, and various planning techniques can be applied: forward or backward
planning, hierarchical planning” (ie., top-down refinement of design plans}, or
"exploratory design” (i.e., hillclimbing in the space of problem formulations).

The mapping of a knowledge level specification of a design system into an
algorithm-level search algorithm can draw on formally represented bodies of
generally useful "common sense” knowledge and procedures relevant 1o reason-
ing about the physical artifacts being designed. Much has been leared regard-
ing qualitatively reasoning about physical systems in general. We have initial
answers to such questions as: how to qualitatively simulate certain classes of
physical systems; how to derive aggregate system behavior from the behavior of
the parts; how to determine the function of the system given its aggregate be-
havior and a description of the system’s cOntext; efc. Much also has learned
about (qualitatively) reasoning about the geomelry of physical objects in
general: how to satisfy placement and sizing constraints; how t0 satisfy con-
straints involving forces being applied at various points in space; how to satisfy
Kkinematic constraints on how physical structures can MOVe, how to analyze
stresses based on shape; and how to simulate a mechanism’s movement through
space.

Mapping an algorithm-level search algorithm into a prograim. Implement-
ing a design search algorithm can involve several types of tasks: coding in an
appropriate programming language, such as C++, LISP, OPSS, KEE!™; using
commercially available tools for representing design artifact representations
(e.g., parametric modellers) and for processing common tasks (e.g., constraiot
mManagers, geometric modellers and constraint MmMAanagers, engineering
databases); instantiating & domain-independent, design process shell (e.g., fo;,;_'
hierarchical refinement and constraint propagation); and creating cu'stmm'zﬁ(;é
procedures oF algorithms for special purpose tasks, gither by hand, or by runmﬂ%
a knowledge compiler.

Design as part of a larger engineering process. Design is only one phase &
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aspect of a larger engineering process that also includes market studies, concep-
tualization, research and development, manufacturing, testing, maintenance and
marketing. The more the design process can be integrated with the other en-
gineering phases, the more cost-effective the entire process will be. Approaches
to computer-aided support of an integrated engineering process can range from
loose couplings of the phases (facilitated by electronic mail, or shared files, or
blackboard architectures), to tight couplings that constrain earlier phases (e.g.,
design) with requirements anticipated in later phases (e.g., manufacturing con-
straints) and reformuiated so that they are expressed in the language of the ear-
lier phases.

Other summary references. We have intended this chapter as a brief but com-
plete summary of the state of the field of AT in Engineering Design. Other use-
ful summary references worth reading include [3] (which introduced the
"routine”, "innovative", and "creative" design distinction), [21] (which distin-
guishes different design process models on the basis of types of design goal in-
teractions), and [43] (which introduced the distinction between the "program
level” and the "algorithm level”, which was called the "function level” in that

paper).

'1.8. APPENDIX A: VENDORS OF SOME AI-BASED
TOOLS FOR COMPUTER-AIDED ENGINEERING

_ . Integraph Corp.
1290 Oakmead Pkwy. Mail Stop WYLE3
yvale, CA 94806 Huntsville, AT, 35894-0001
Tool: MicroStation™
. Mentor Graphics
) Tech Park Drive 8500 South West Creek Side Place
rica, MA 01821 Beaverton, OR 97005
: ECMG™ and MCAE™ Tool: ADE™ I ogic Synthesizer TM
 Massachusetts Avenue Parametric Technology Corp.
idge, MA 02138 128 Technology Sr.
CADT™™ Waltham, MA 02154

Tool: Pro/ENGINEERTM
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Computer Vision
55 Wheeler Street
Cambridge, MA 02138

Tool: DesignView '™

Spatial Technology

2425, 55th Street, Bldg. A
Boulder, CO 80301

Tool: ACIS™

Wisdom Systems
Corporate Circle

30100 Cagrin Blvd.

Suite 100

Pepper Pike, OHIO 44124
Tool: Concept Modeller ™
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