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Beowulf Cluster Analysis Executive Summary

Utility for analysis, diagnosis and performance gauging of homogeneous linux-based beowulf clusters



Executive Summary

Bright, The Multi-Purpose Beowulf Cluster Utility

Background Information

A Brief History


The first Beowulf cluster was built in 1994 at the Center of Excellence in Space Data and Information Sciences (CESDIS) located at Goddard Space Flight Center (GSFC).  This first cluster was sponsored by the Earth and Space Science (ESS) project as part of the High Performance Computing and Communications (HPCC) program.  The ESS project was trying to determine if massively parallel computers could be used effectively to solve problems that faced the Earth and Space Sciences community.  Specifically, it needed a machine that could store 10 gigabytes of data, was less expensive than standard scientific workstations of the time, and that could achieve a peak performance of 1 Gflops ( billions of floating point operations per second).  


At that time, commercially available systems that could meet the performance requirement were 10 to 20 times too expensive. Thomas Sterling and Don Becker, two scientists at GSFC, were the first to suggest that a machine that met the needs of the ESS project could be built using commodity off the shelf (COTS) parts linked together in parallel configurations.  They knew that it would fall short of the performance requirement but it was determined that it would reach a level of performance that was adequate for the needs of the ESS project.  

The first cluster, named Wiglaf, used 16 Intel 80486 100 MHz processors connected by channel bonded Ethernet.  It was able to maintain a sustained rate of 75 Mflops on certain applications.  The next cluster, named Hrothgar, used 16 Pentium class processors and achieved a sustained rate of 280 Mflops.  By the end of 1996, Beowulf clusters had been built that could reach a sustained performance of 1 Gflops. In 1998, a Beowulf cluster utilizing the DEC Alpha family of processors was able to sustain a performance level of 48 Gflops.  This was fast enough to earn the rank of 113th on the world's 500 most powerful computers list.


The rapid growth of Beowulf clusters cannot be attributed solely to their speed.  There are many other characteristics of Beowulf clusters that make them viable supercomputer alternatives.  The next section will discuss what exactly Beowulf is.

Beowulf


The definition of what makes a system a Beowulf varies among those in the scientific computing community.  Some people believe that one can only call a system a Beowulf if it was built in the same manner as the original NASA cluster.  Others go to the opposite extreme, asserting that any system of workstations running parallel code can be called a Beowulf cluster.  The definition which seems to be most widely accepted, and the one we follow, lies between the two extremes.  


Beowulf is a multi-computer architecture used for parallel computing. Beowulf systems are collections of personal computers (PCs, referred to as nodes) which are interconnected via Ethernet or some other widely available networking technology.  Of these interconneced nodes, one is the server node and the rest, one or more PCs, are the client nodes.  Each node in the cluster is built from commercially available off-the-shelf hardware and is trivially reproducable.  As is the case with hardware, Beowulf clusters make use of commodity software as well.  The nodes of a Beowulf cluster run one of many freely available, open-source, Unix-like operating systems.  


  To harness system concurrency and make use of Beowulf’s parallel computing capabilities, a cluster needs more than just an operating system and particular hardware configuration.  A layer of logical structure between the programmer and the parallel system resources, matching the physical communications layer, is required.  This layer consists of a parallel computation model.  This model can take the form of process level parallelism, shared memory, or in our case, message passing.

Message Passing Models


Message passing models facilitate interaction among sequential processes.  These processes run on the nodes of a cluster, one or more to a processor.  They communicate through the use of messges passed via the physical network.  The application programming interface (API), fundamemtal to most message passing models, consists primarily of standardized calls to libraries which handle interprocess ocmmunication.  Message passing models for parallel computation have been widely adopted because of their similarity to the physical attributes of many multiprocessor architectures.  Probably the most widely adopted message passing model is MPI.  

MPI


MPI, or Message Passing Interface, was released in 1994 after two years in the design phase.  The designers of MPI, a working group convened by the Workshop on Standards for Message Passing in a Distributed Memory Environment, made an effort to include the functionality of several other research projects. Of these, PVM is included; it is another message passing model and is discussed later.  MPI’s functionality is fairly straightforward.


MPI programs are written in C or Fortran and linked against the MPI libraries; C++ and Fortran90 bindings are also supported.  MPI applications run in a multiple-instruction multiple-data (MIMD) manner.  They consist of a number of “normal” processes running independently in separate, unshared address spaces and communicate through calls to MPI procedures.  One common characteristic of MPI applications is that their processes are often the same executable, each running in its own address space.  Although most common, this is not a requirement.   It is possible for each of the individual processes of an MPI program to be instances of different executables. To obtain useful parallelism, each process in an MPI application is assigned a unique identifier. Using this unique identifier, processes can split up a problem and each can take a piece without any duplication of effort.  In this way, MPI enables a collection of computers to be used as a coherent and flexible concurrent computational resource.

PVM


Another message passing model we dealt with during this project, one which the creators of MPI looked to for ideas, is Parallel Virtual Machine (PVM).  Its method of operation is a little more complicated than MPI, though it is not as powerful.


Like MPI, PVM programs are written in C and Fortran, and calls to functions provided by the PVM library handle things like process initiation and message transmission and reception.  But unlike MPI, PVM programs require the execution of support software on each node PVM processes run on.  The support software is a daemon, pvmd3, which runs on each machine in a user-configurable pool, also referred to as a virtual machine.  A daemon is a program that runs continuously in order to process certain requests made by the users, and pvmd3 is no exception.  It handles things like message routing, data conversion for incomplete architectures, and any other tasks necessary for operation in a heterogeneous, network environment.  When a user wants to run a PVM application pvmd3 must be started on each node which is to be included in the virtual machine.  Once the daemons are started, the application can be run from any of the nodes included in the virtual machine.  Users have the ability to run multiple PVM applications simultaneously and overlapping virtual machines are permitted. 


PVM applications most commonly run in a single-instruction multiple-data (SIMD) fashion.  Each process executes the same instructions on a small portion of data and then the results are combined.  In a way similar to MPI, PVM supports functional parallelism as well.  Each PVM process is assigned a different function and they all work on the same set of data.  Using either of these two methods, the PVM message passing model presents a unified and general environment for parallel computation.

Summary

The coupling of Beowulf technology and a message passing model for parallel computation, such as MPI or PVM,  presents a paradigm for parallel computing which is both powerful and cost effective.  In our project, we developed a utility for Beowulf systems. 

Problem Description


The goal of this project was to develop a suite of utilities and diagnostic programs that can be executed on a Beowulf Cluster Computer to verify functionality, certify compatibility and identify and help isolate system faults. This tool will be incorporated into the collection of system software that is being developed for Beowulf Cluster Computers. The suite provides a simple mechanism for novice administrators to test a cluster. In addition, its modular and extensible design allows veteran Beowulf users to easily customize the suite to fit their needs. This project has been designed and implemented in collaboration with Phil Merkey of the Universities Space Research Association (USRA)/CESDIS as part of a project sponsored by WPI and the GSFC.

Design


Beowulf technology is still evolving.  Since its creation in 1994, problems associated with Beowulf clusters have been evolving as well, right along with hardware configurations, network technologies and topologies, and the changing needs in the parallel computing community.  This constant evolution was the motivation behind our main requirement.  Our utility, which has been named Bright, had to be modular and extensible.  The user had to have the ability to add his/her own tests, so that as the user’s needs evolved, our utility could evolve as well.  By being modular, and easily customizable as a result, our utility has the ability to adapt to the changing needs of  its users.  What follows is a summary of each module that makes up our utility.  For a more detailed discussion of the requirements, implementation, and methodology behind the utiliy’s development see the complete MQP text. 

Completeness

The completeness module of the Bright utility relies on a configuration file.  This file is maintained by the system administrator of the cluster.  It contains a listing of all the necessary software packages which that system needs to function correctly.  The completeness module is in charge of determining whether or not the root node possesses all of the necessary items.  Once the root node has been validated, the process of ensuring conformity throughout the nodes can begin.  

Compatibility

The job of this module is to make sure that all of the compute nodes have the same set of essential software packages as the root node.  Essentially, this means running the completeness module on all of the compute nodes and keeping track of all results.  This test will ensure that all nodes have the same necessary packages installed.  Currently, this module can be executed across a cluster in no more time than it takes to run the completeness check on the root node.  This is because each node executes it in parallel.  

System Diagnosis

When hardware fails in a Beowulf cluster it can be difficult for the administrator to isolate the fault and in some cases difficult to detect the problem in the first place. The system diagnostics module attempts to alleviate this problem.  It tests essential hardware sub-systems across a Beowulf cluster by conducting extensive tests on system memory, hard disks, and processor functionality.  If used regularly, administrators can detect and fix potential hardware failure before the situation becomes critical.  

Another, secondary, function of the system diagnosis module is to gather hardware information for each node in a cluster.  This information includes things such as memory and hard disk statistics and precision of floating point arithmetic.

Performance

The purpose of the performance module is, to gauge a Beowulf clusters performance.  It employs the use of two standard performance tests already used in the field of scientific computing, Linpack and Netpipe.  Linpack is a widely accepted benchmarking program.  Its function within our performance module is to evaluate the performance of each individual node.  The benchmark generated is based on either single precision or double precision arithmetic, depending on the type of test the administrator chose to run.  

The other portion of this module, Netpipe, evaluates the performance of the physical network.  It does so using whichever network protocol or message pasing model the administrator chooses.  Currently, TCP, MPI, and PVM are supported.  The data generated by Netpipe can be used to infer useful network statistics and generate graphs representing such things as network saturation points, maximum network throughput, and Ethernet signatures.

Conclusions

The Bright utility addresses many of the problems usually associated with maintaining Beowulf clusters.  It facilitates cluster maintenance and analysis through the automated verification of essential software packages across the nodes of a homogeneous cluster.  It eases system diagnosis by providing utilities to test system hardware throughout the cluster and presents their results in comprehensive and concise manner.  Finally, it simplifies the sometimes difficult task of performance testing buy providing tools which gauge the performance of each individual node in addition to overall network performance.  
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