ActivPass: Your Daily Activity is Your Password

Thomas Finelli, Artian Kica, Evan Gilgenbach

Introduction

- Authentication through passwords
 - Pros:
 - Secure
 - Simple
 - Cons:
 - Secure passwords are hard
 - Password reuse is common and dangerous
 - Easy to share; also security risk
- Create new authentication method
 - Simple and easy to use
 - Resistant to sharing

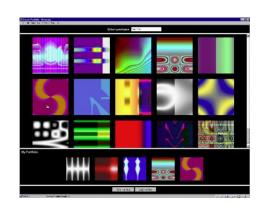
Vision

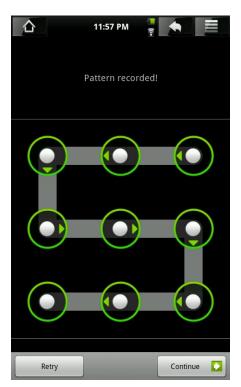
- Authenticate based on user's activity
- Ask user questions about their activity
 - What is the caller's name from the first call you received today?
 - Which news site did you not visit today? (CNN, CBS, BBC, ABC)
- Question generation
 - Call logs
 - SMS logs
 - Facebook activities
 - Browser history
- Use outlier events
 - Typically easy to remember hard to guess

Vision

Applications

- Password sharing prevention (Netflix, HBO Go, etc.)
- Replacement for password hints
- In addition to regular password
- User can customize
 - Number of questions
 - Question format
 - Activity permissions
- Perform user studies

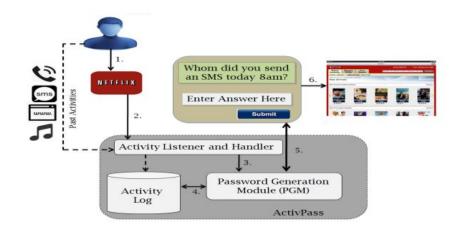


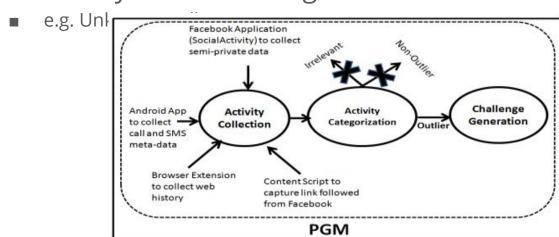

Other Forms of Authentication

- Text Password
 - Easily sharable
 - Security risks if leaked

- Physical Biometric Authentication
 - Face, Fingerprint, Iris, Audio, Gait
 - Security risks if leaked
- Graphical Password
 - Touch predetermined areas or sequences of images

Other Forms of Authentication


- HCI-based Biometric
 - Input Device Interaction Based
 - Keystroke, Mouse, Haptic
 - Software Interaction Based
 - Email behavior, typing style, game strategy
 - Keystroke pattern based authentication had 50% false acceptance rate
- One Time Password
 - Only works for one session
 - Dynamically Changing password which is based on "something you have"
 - Mitigates password sharing by being dynamic


How does ActivPass work?

- Activity Listener runs in the background and logs metadata
 - SMS, calls, web pages, etc.
- When user invokes an application:
 - Password Generation Module (PGM) creates n password questions based on collected metadata
 - If user can answer k correctly, the application is launched

How does ActivPass work?

- Periodically draws logs in order to classify them with an Activity Categorization Module.
 - Attempts to determine "outliers"
 - e.g. Browser homepage vs
 infrequently visited webpage
 - Erases any "irrelevant" logs

What sort of questions are asked?

	Range of questions asked		
Facebook	Profiles visited by the user.		
	2) Groups the user is a member of.		
	A person with whom user had a chat.		
Web	 Titles of the web-pages visited by the user. 		
Call	A person whom the user called.		
	A person who called the user.		
SMS	A person whom the user sent an SMS.		
	A person who sent an SMS to the user.		
Audio	 The tune/tone used by the user as an alarm. 		
	2) The tune/tone used by the user as her ring-tone.		
	The audio files downloaded by the user.		

Source	Details of data collected		
SMS	Time, Receiver/Sender Name		
Call	Time, Type (incoming, outgoing), Name of other person, Duration		
Audio	Title of Music added in this week, Alarm tone,		
	Ring tone		
Web	URL, Time of visit		
Link visited from Facebook	URL, Time of visit		
Facebook Group	Name of Private (secret and closed) groups		
Facebook Pages	Name of pages created by user		
Facebook Profile	Name of Facebook friends of user		
Facebook Message	Time (in milliseconds from epoch), Name of other person, Msg Id, Thread Id		

Results

- Results came in three stages
- Stage 0 determined feasibility using user-created questions
- Stage 1 determined first-pass numbers from the initial design
- Stage 2 was a re-design that eliminated poorly-performing activities and questions.

Results_(cont.)

- Over 50 volunteers given 20 questions:
 - o average recall rate: 86.3% ± 9.5
 - average guessability: 14.6% ± 5.7
- Devised Bayesian estimate of challenge given n questions where k are required
- 95% success rate with
 5.5% guessability over
 15 volunteers

n	k	Authentic user	Impostor
4	4	0.554	0.0004
4	3	0.906	0.011
4	2	0.989	0.1043
4	1	0.998	0.468
3	3	0.642	0.0031
3	2	0.948	0.0577
3	1	0.996	0.3771
2	2	0.745	0.0213
2	1	0.981	0.2707

Discussion

- Password sharing in a secure threat-model
- Tests against dedicated attackers
- Three Factor Model
- Compares favorably to other non-biometric "something you are" solutions (keystroke)
- Prior Art: Facebook security verification