
CS 4518 Mobile and Ubiquitous
Computing

Lecture 1: Introduction

Emmanuel Agu

About Me

A Little about me

 WPI Computer Science Professor

 Research interests:
• mobile computing especially mobile health, computer graphics

 Started working in mobile computing, wireless in grad school

 CS + ECE background (Hardware + software)

• Current active research: Mobile health apps

• E.g: AlcoGait app to detect how drunk Smartphone owner is

• https://www.youtube.com/watch?v=pwZaoKmfq8c

https://www.youtube.com/watch?v=pwZaoKmfq8c

Administrivia

Administrivia: Schedule

 Week 1-4: I will introduce class, concepts, Android (Students:
Android programming, assigned projects)
 Goal: Students acquire basic Android programming skills to do

excellent project

 Focus on programming mobile & ubicomp components

 Week 4: Students will present final project proposal

 Week 5-7: Students work on final project

 Week 7: Students present + submit final projects

 Quizzes (5) throughout

Requirements to get a Grade

 Grading policy:
 Assigned Projects 40%, Final project: 35%, Quizzes: 25%

 Final project phases: (See class website for deadlines)
1. Pick partners, form project groups

2. Submit 1-slide of proposed idea (problem + envisioned solution)

3. Present project proposal

+ plus submit proposal (intro + related work + methodology/design + proposed
project plan)

4. Build app, evaluate, experiment, analyze results

5. Present results + submit final paper (in week 7)

 New final project aspects this offering:
 Larger teams (5 or 6 members)

 Points for degree of difficulty of project

Course Texts

 Android Texts:
 Head First Android Dev, (2nd ed), Dawn and David Griffiths, O'Reilly, 2017

 Android Programming: The Big Nerd Ranch (Third edition), Bill Phillips, Chris
Stewart and Kristin Marsicano, The Big Nerd Ranch, 2017

 Will also use official Google Android documentation

 Learn from research papers: Why not text?

Gentle,

visual

intro

Bootcamp

Tutorial

Course Assistants

TA: Chai Nimkar SA: Rachel Plante

Class in 2 Halves

 2 Halves: About 50 mins each half

 Break of about 10 mins

 Talk to me at the end NOT during break

 I need break too

Poll Question

 How many students:
1. Own recent Android phones (running Android 4.4, 5, 6 , 7 or 8?)

2. Can borrow Android phones for projects (e.g. from friend/spouse)?

3. Do not own and cannot borrow Android phones for projects?

Mobile Devices

Mobile Devices

 Smart phones (Blackberry, iPhone, Android, etc)

 Tablets (iPad, etc)

 Laptops

 Smartwatches

SmartPhone Hardware

 Smart = Communication + Computing + Sensors
 Communication: Talk, text, Internet access, chat

 Computing: Java apps, JVM, apps

 Powerful processors: Quad core CPUs, GPUs

 Sensors: Camera, video, location, temperature, heart rate sensor, etc

 Google Pixel XL phone: Quad core 1.6 GHz Snapdragon CPU,
Adreno 530 GPU, 4GB RAM
 A PC in your pocket!!

 Multi-core CPU, GPU

 Runs OpenGL ES, OpenCL and now Deep learning (Tensorflow)

Smartphone Sensors
 Typical smartphone sensors today

 accelerometer, compass, GPS, microphone, camera, proximity

 Can sense physical world, inputs to intelligent sensing apps
 E.g. Automatically turn off smartphone ringer when user walks into a class

Growth of Smartphone Sensors

 Every generation of smartphone has more and more sensors!!

Image Credit: Qualcomm

Future sensors?

• Complex activity sensor,

• Pollution sensor,

• etc

Wireless Networks

Wireless Network Types

 Wi-Fi (802.11): (e.g. Starbucks Wi-Fi)

 Cellular networks: (e.g. Sprint network)

 Bluetooth: (e.g. car headset)

 Near Field Communications (NFC)

e.g. Mobile pay: swipe phone at dunkin donut

Wi-Fi NFC

Bluetooth

Wireless Networks Comparion

Network Type Speed Range Power Common Use

WLAN 600 Mbps 45 m –
90 m

100 mW Internet.

LTE (4G) 5-12 Mbps 35km 120 – 300 mW Mobile Internet

3G 2 Mbps 35km 3 mW Mobile Internet

Bluetooth 1 – 3 Mbps 100 m 1 W Headsets, audio streaming.

Bluetooth LE 1 Mbps 100+ m .01–.5 W Wearables, fitness.

NFC 400 kbps 20 cm 200 mW Mobile Payments

Table credit: Nirjoin, UNC

Different speed, range, power, uses, etc

Mobile Computing

Mobile Computing

• Human computes while moving
• Continuous network connectivity,

• Points of connection (e.g. cell towers, WiFi access point) might change

• Note: Human initiates all activity, (e.g launches apps)

• Wireless Network is passive

• Example: Using foursquare.com on SmartPhone

Related Concept: Location-Awareness

 Mobile computing = computing while location changes

 Location-aware: Location must be one of app/program’s inputs

 Different user location = different output (e.g. maps)

 E.g. User in California gets different map from user in Boston

Program/app

Inputs

Output

Program/app

Inputs

Output

Location

Non-mobile app Mobile app

Location-Aware Example

 Location-aware app must have different
behavior/output for different locations

 Example: Mobile yelp

 Example search: Find Indian
restaurant

 App checks user’s location

 Indian restaurants close to
user’s location are returned

Example of Truly Mobile App: Word Lens

 Translates signs in foreign Language

 Location-dependent because location of sign, language? varies

Some Mobile apps are not Location-Aware

 If output does not change as location changes, not location-aware

 Apps run on mobile phone just for convenience

 Examples:

 Distinction can be fuzzy. E.g. Banking app may display nearest locations

Diet recording appMobile banking app

Which of these apps are Location-Aware?

a. Yahoo mail mobile
b. Uber app

Mobile Device Issue: Energy Efficiency
 Most resources increasing exponentially except battery energy (ref. Starner,

IEEE Pervasive Computing, Dec 2003)

 Some energy saving strategies:

• Energy harvesting: Energy from vibrations, charging mats, moving humans

• Scale content: Reduce image, video resolutions to save energy

• Auto-dimming: Dim screen whenever user not using it. E.g. talking on phone

• Better user interface: Estimate and inform user how long each task will take

 E.g: At current battery level, you can either type your paper for 45 mins, watch
video for 20 mins, etc

Ubiquitous Computing

Ubiquitous Computing

• Collection of specialized assistants to assist human in tasks (reminders,
personal assistant, staying healthy, school, etc)

• App figures out user’s current state, intent, assists them

• How? array of active elements, sensors, software, Artificial intelligence

• Extends mobile computing and distributed systems (more later)

• Note: System/app initiates activities, has intelligence

• Example: Google Assistant, feed informs user of
• Driving time to work, home

• News articles user will like

• Weather

• Favorite sports team scores, etc

• Also supports 2-way conversations

User Context

 Imagine a genie/personal assistant who
wants to give you all the “right
information” at the right time
 Without asking you any questions

 Examples:
 Detect traffic ahead, suggest alternate route

 Bored user, suggest exciting video, etc

 Genie/personal assistant needs to
passively detect user’s:
 Current situation (Context)

 Intention/plan

Ubicomp Senses User’s Context

 Context?
 Human: motion, mood, identity, gesture

 Environment: temperature, sound, humidity, location

 Computing Resources: Hard disk space, memory, bandwidth

 Ubicomp example:

 Assistant senses: Temperature outside is 10F (environment sensing) +
Human plans to go work (schedule)

 Ubicomp assistant advises: Dress warm!

 Sensed environment + Human + Computer resources = Context

 Context-Aware applications adapt their behavior to context

Sensing the Human

 Environmental sensing is relatively straight-forward
• Use specialized sensors for temperature, humidity, pressure, etc

 Human sensing is a little harder (ranked easy to hard)
 When: time (Easiest)

 Where: location

 Who: Identification

 How: (Mood) happy, sad, bored (gesture recognition)

 What: eating, cooking (meta task)

 Why: reason for actions (extremely hard!)

 Human sensing (gesture, mood, etc) easiest using cameras

 Research in ubiquitous computing integrates
 location sensing, user identification, emotion sensing, gesture recognition,

activity sensing, user intent

5 W’s + 1 H

Sensor

 Example: E.g. door senses only human motion, opens

 Sensor: device that can sense physical world, programmable, multi-functional
for various tasks (movement, temperature, humidity, pressure, etc)

 Device that can take inputs from physical word

 Also includes camera, microphone, etc

 Ubicomp uses data from sensors in phone, wearables (e.g. clothes), appliances, etc.

(courtesy of MANTIS

project, U. of Colorado)

RFID tags Tiny Mote Sensor,

UC Berkeley

Ubiquitous Computing:
Wearables

Ubiquitous Computing: Wearable
sensors for Health

UbiComp: Wearables, BlueTooth Devices

Body Worn

Activity Trackers

Bluetooth

Wellness

Devices

External sources of data for smartphone

Definitions: Portable, mobile
& ubiquitous computing

Distributed Computing

 Computer system is physically distributed

 User can access system/network from
various points.

 E.g. Unix cluster, WWW

 Huge 70’s revolution

 Distributed computing example:
 WPI students have a CCC account

 Log into CCC machines,

 Web surfing from different terminals on campus
(library, dorm room, zoolab, etc).

 Finer points: network is fixed, Human moves

Portable (Nomadic) Computing

 Basic idea:

 Network is fixed

 device moves and changes point of
attachment

 No computing while moving

 Portable (nomadic) computing example:
 Mary owns a laptop

 Plugs into her home network,

 At home: surfs web while watching TV.

 Every morning, brings laptop to school, plug into
WPI network, boot up!

 No computing while traveling to school

Mobile Computing Example

 Continuous computing/network access while moving,
automatic reconnection

 Mobile computing example:
 John has SPRINT PCS phone with web access, voice, SMS

messaging.

 He runs apps like facebook and foursquare, continuously
connected while walking around Boston

 Finer points:
 John and mobile users move

 Network deals with changing node location,
disconnection/reconnection to different cell towers

Ubiquitous Computing Example

 Ubiquitous computing: John is leaving home to go and meet his
friends. While passing the fridge, the fridge sends a message to his
shoe that milk is almost finished. When John is passing grocery
store, shoe sends message to glasses which displays “BUY milk”
message. John buys milk, goes home.

 Core idea: ubiquitous computing assistants actively help John

SmartPhone Sensing

Smartphone Sensing

 Smartphone used to sense human, environment

 Example: Human activity sensing (e.g. walking, driving,
climbing stairs, sitting, lying down)

 Example 2: Waze crowdsourced traffic

Sensor Processing

 Machine learning commonly used to process sensor data
 Action to be inferred is hand-labelled to generate training data

 Actual data is mined for combinations of sensor readings corresponding to
action

 Example: Smartphone detects user’s activity (e.g. walking, running ,
sitting,) by classifying accelerometer sensor data

What Can We Detect/Infer using These Sensors

Image Credit: Deepak Ganesan, UMass

Smartphone Sensing!!

Smartphone

Sensor data

Machine

Learning

Internet of Things (IoT)

IoT: Networked Smart Things (Devices)

 Smart things: Can be accessed, controlled over the network,
learns users patterns

Nest Smart thermostat

- Learns owners manual settings

- Turns down heat when not around

Smart Fridge

- See groceries in fridge from anywhere

Other Ubicomp Systems

 Smart Homes: Continuously monitors elders who live in smart
home, automatically dials 911 if elder ill, fall
 Falls kill many old people who live alone

 Smart buildings: Senses presence of people, ambient
temperature, people flow, dynamically adjusts heating/cooling
 Can save over 40% of energy bill

 Smart Cities: Real time data from Sensors embedded in street
used to direct drivers to empty parking spots
 About 30% of traffic jam caused by people hunting for parking

Introduction to Android

What is Android?

 Android is world’s leading mobile operating system
 Open source (https://source.android.com/setup/)

 Google:

 Owns Android, maintains it, extends it

 Distributes Android OS, developer tools, free to use

 Runs Android app market

https://source.android.com/setup/

SmartPhone OS

 Over 80% of all phones sold are smartphones

 Android share 86% worldwide

Source: Statista

Android Growth

 Over 2 billion Android users, March 2017 (ref: the verge)

 2.8 million apps on the Android app market (ref: statista.com)
 Games, organizers, banking, entertainment, etc

Android is Multi-Platform

Android runs on

all these devices

Tablet

In-car console
Smartwatch

Smartphone

Television

This Class: Focuses

Mostly on Smartphones!

Google Glass

(being redone)

Android for Mobile Computing and
Ubicomp

 Android for Mobile programmable modules
 Audio/video playback, taking pictures, database, location detection,

maps

 Android for Ubicomp programmable modules
 Sensors (temperature, humidity, light, etc), proximity

 Face detection, activity recognition, place detection, speech
recognition, speech-to-text, gesture detection, place type
understanding, etc

 Machine learning, deep learning

 Class will use Android 7 (“Nougat”)

 Officially released December 5, 2016

 Latest version is Android 8 (Oreo), released August 2017

 Below is Android version distribution as at January 8, 2018

Android Versions

Source: http://developer.android.com/about/dashboards/index.html

Android Developer
Environment

New Android Environment: Android Studio

 Old Android dev environment used Eclipse + plugins

 Google developed it’s own IDE called Android Studio

 Integrated development environment, cleaner interface, specifically for
Android Development (e.g. drag and drop app design)

 In December 2014, Google announced it will stop supporting Eclipse IDE

Where to Run Android App

 Android app can run on:
 Real phone (or device)

 Emulator (software version of phone)
Emulated phone

in Android Studio

Running Android App on Real Phone

 Need USB cord to copy app from development PC to phone

Emulator Pros and Cons (Vs Real Phone)

 Pros:
 Conveniently test app on basic hardware by clicking in software

 Easy to test app on various emulated devices (phones, tablets, TVs,
etc), various screen sizes

 Cons:
 Limited support, access to hardware, communications, sensors

 E.g. GPS, camera, video recording, making/receiving phone calls,
Bluetooth devices, USB devices, battery level, sensors, etc

 Slower than real phone

New Support for Sensors

 Can now emulate some sensors (e.g. location, accelerometer),
but still limited

Android Software Framework

Android Functionality as Apps

 Android functionality: collection of mini-applications (apps)

 Even dialer, keyboard, etc

Android Software Framework

 OS: Linux kernel, drivers

 Apps: programmed & UI in Java

 Libraries: OpenGL ES (graphics), SQLite (database), etc

Android
Software
Framework

 Each Android app runs in its own
security sandbox (VM, minimizes
complete system crashes)

 Android OS multi-user Linux
system

 Each app is a different user
(assigned unique Linux ID)

 Access control: only process with
the app’s user ID can access its
files

Ref: Introduction to Android Programming,

Annuzzi, Darcey & Conder

References

 Android App Development for Beginners videos by Bucky
Roberts (thenewboston)

 Ask A Dev, Android Wear: What Developers Need to Know,
https://www.youtube.com/watch?v=zTS2NZpLyQg

 Ask A Dev, Mobile Minute: What to (Android) Wear,
https://www.youtube.com/watch?v=n5Yjzn3b_aQ

 Busy Coder’s guide to Android version 4.4

 CS 65/165 slides, Dartmouth College, Spring 2014

 CS 371M slides, U of Texas Austin, Spring 2014

