
CS 4518 Mobile and Ubiquitous
Computing

Lecture 1: Introduction

Emmanuel Agu

About Me

A Little about me

 WPI Computer Science Professor

 Research interests:
• mobile computing especially mobile health, computer graphics

 Started working in mobile computing, wireless in grad school

 CS + ECE background (Hardware + software)

• Current active research: Mobile health apps

• E.g: AlcoGait app to detect how drunk Smartphone owner is

• https://www.youtube.com/watch?v=pwZaoKmfq8c

https://www.youtube.com/watch?v=pwZaoKmfq8c

Administrivia

Administrivia: Schedule

 Week 1-4: I will introduce class, concepts, Android (Students:
Android programming, assigned projects)
 Goal: Students acquire basic Android programming skills to do

excellent project

 Focus on programming mobile & ubicomp components

 Week 4: Students will present final project proposal

 Week 5-7: Students work on final project

 Week 7: Students present + submit final projects

 Quizzes (5) throughout

Requirements to get a Grade

 Grading policy:
 Assigned Projects 40%, Final project: 35%, Quizzes: 25%

 Final project phases: (See class website for deadlines)
1. Pick partners, form project groups

2. Submit 1-slide of proposed idea (problem + envisioned solution)

3. Present project proposal

+ plus submit proposal (intro + related work + methodology/design + proposed
project plan)

4. Build app, evaluate, experiment, analyze results

5. Present results + submit final paper (in week 7)

 New final project aspects this offering:
 Larger teams (5 or 6 members)

 Points for degree of difficulty of project

Course Texts

 Android Texts:
 Head First Android Dev, (2nd ed), Dawn and David Griffiths, O'Reilly, 2017

 Android Programming: The Big Nerd Ranch (Third edition), Bill Phillips, Chris
Stewart and Kristin Marsicano, The Big Nerd Ranch, 2017

 Will also use official Google Android documentation

 Learn from research papers: Why not text?

Gentle,

visual

intro

Bootcamp

Tutorial

Course Assistants

TA: Chai Nimkar SA: Rachel Plante

Class in 2 Halves

 2 Halves: About 50 mins each half

 Break of about 10 mins

 Talk to me at the end NOT during break

 I need break too

Poll Question

 How many students:
1. Own recent Android phones (running Android 4.4, 5, 6 , 7 or 8?)

2. Can borrow Android phones for projects (e.g. from friend/spouse)?

3. Do not own and cannot borrow Android phones for projects?

Mobile Devices

Mobile Devices

 Smart phones (Blackberry, iPhone, Android, etc)

 Tablets (iPad, etc)

 Laptops

 Smartwatches

SmartPhone Hardware

 Smart = Communication + Computing + Sensors
 Communication: Talk, text, Internet access, chat

 Computing: Java apps, JVM, apps

 Powerful processors: Quad core CPUs, GPUs

 Sensors: Camera, video, location, temperature, heart rate sensor, etc

 Google Pixel XL phone: Quad core 1.6 GHz Snapdragon CPU,
Adreno 530 GPU, 4GB RAM
 A PC in your pocket!!

 Multi-core CPU, GPU

 Runs OpenGL ES, OpenCL and now Deep learning (Tensorflow)

Smartphone Sensors
 Typical smartphone sensors today

 accelerometer, compass, GPS, microphone, camera, proximity

 Can sense physical world, inputs to intelligent sensing apps
 E.g. Automatically turn off smartphone ringer when user walks into a class

Growth of Smartphone Sensors

 Every generation of smartphone has more and more sensors!!

Image Credit: Qualcomm

Future sensors?

• Complex activity sensor,

• Pollution sensor,

• etc

Wireless Networks

Wireless Network Types

 Wi-Fi (802.11): (e.g. Starbucks Wi-Fi)

 Cellular networks: (e.g. Sprint network)

 Bluetooth: (e.g. car headset)

 Near Field Communications (NFC)

e.g. Mobile pay: swipe phone at dunkin donut

Wi-Fi NFC

Bluetooth

Wireless Networks Comparion

Network Type Speed Range Power Common Use

WLAN 600 Mbps 45 m –
90 m

100 mW Internet.

LTE (4G) 5-12 Mbps 35km 120 – 300 mW Mobile Internet

3G 2 Mbps 35km 3 mW Mobile Internet

Bluetooth 1 – 3 Mbps 100 m 1 W Headsets, audio streaming.

Bluetooth LE 1 Mbps 100+ m .01–.5 W Wearables, fitness.

NFC 400 kbps 20 cm 200 mW Mobile Payments

Table credit: Nirjoin, UNC

Different speed, range, power, uses, etc

Mobile Computing

Mobile Computing

• Human computes while moving
• Continuous network connectivity,

• Points of connection (e.g. cell towers, WiFi access point) might change

• Note: Human initiates all activity, (e.g launches apps)

• Wireless Network is passive

• Example: Using foursquare.com on SmartPhone

Related Concept: Location-Awareness

 Mobile computing = computing while location changes

 Location-aware: Location must be one of app/program’s inputs

 Different user location = different output (e.g. maps)

 E.g. User in California gets different map from user in Boston

Program/app

Inputs

Output

Program/app

Inputs

Output

Location

Non-mobile app Mobile app

Location-Aware Example

 Location-aware app must have different
behavior/output for different locations

 Example: Mobile yelp

 Example search: Find Indian
restaurant

 App checks user’s location

 Indian restaurants close to
user’s location are returned

Example of Truly Mobile App: Word Lens

 Translates signs in foreign Language

 Location-dependent because location of sign, language? varies

Some Mobile apps are not Location-Aware

 If output does not change as location changes, not location-aware

 Apps run on mobile phone just for convenience

 Examples:

 Distinction can be fuzzy. E.g. Banking app may display nearest locations

Diet recording appMobile banking app

Which of these apps are Location-Aware?

a. Yahoo mail mobile
b. Uber app

Mobile Device Issue: Energy Efficiency
 Most resources increasing exponentially except battery energy (ref. Starner,

IEEE Pervasive Computing, Dec 2003)

 Some energy saving strategies:

• Energy harvesting: Energy from vibrations, charging mats, moving humans

• Scale content: Reduce image, video resolutions to save energy

• Auto-dimming: Dim screen whenever user not using it. E.g. talking on phone

• Better user interface: Estimate and inform user how long each task will take

 E.g: At current battery level, you can either type your paper for 45 mins, watch
video for 20 mins, etc

Ubiquitous Computing

Ubiquitous Computing

• Collection of specialized assistants to assist human in tasks (reminders,
personal assistant, staying healthy, school, etc)

• App figures out user’s current state, intent, assists them

• How? array of active elements, sensors, software, Artificial intelligence

• Extends mobile computing and distributed systems (more later)

• Note: System/app initiates activities, has intelligence

• Example: Google Assistant, feed informs user of
• Driving time to work, home

• News articles user will like

• Weather

• Favorite sports team scores, etc

• Also supports 2-way conversations

User Context

 Imagine a genie/personal assistant who
wants to give you all the “right
information” at the right time
 Without asking you any questions

 Examples:
 Detect traffic ahead, suggest alternate route

 Bored user, suggest exciting video, etc

 Genie/personal assistant needs to
passively detect user’s:
 Current situation (Context)

 Intention/plan

Ubicomp Senses User’s Context

 Context?
 Human: motion, mood, identity, gesture

 Environment: temperature, sound, humidity, location

 Computing Resources: Hard disk space, memory, bandwidth

 Ubicomp example:

 Assistant senses: Temperature outside is 10F (environment sensing) +
Human plans to go work (schedule)

 Ubicomp assistant advises: Dress warm!

 Sensed environment + Human + Computer resources = Context

 Context-Aware applications adapt their behavior to context

Sensing the Human

 Environmental sensing is relatively straight-forward
• Use specialized sensors for temperature, humidity, pressure, etc

 Human sensing is a little harder (ranked easy to hard)
 When: time (Easiest)

 Where: location

 Who: Identification

 How: (Mood) happy, sad, bored (gesture recognition)

 What: eating, cooking (meta task)

 Why: reason for actions (extremely hard!)

 Human sensing (gesture, mood, etc) easiest using cameras

 Research in ubiquitous computing integrates
 location sensing, user identification, emotion sensing, gesture recognition,

activity sensing, user intent

5 W’s + 1 H

Sensor

 Example: E.g. door senses only human motion, opens

 Sensor: device that can sense physical world, programmable, multi-functional
for various tasks (movement, temperature, humidity, pressure, etc)

 Device that can take inputs from physical word

 Also includes camera, microphone, etc

 Ubicomp uses data from sensors in phone, wearables (e.g. clothes), appliances, etc.

(courtesy of MANTIS

project, U. of Colorado)

RFID tags Tiny Mote Sensor,

UC Berkeley

Ubiquitous Computing:
Wearables

Ubiquitous Computing: Wearable
sensors for Health

UbiComp: Wearables, BlueTooth Devices

Body Worn

Activity Trackers

Bluetooth

Wellness

Devices

External sources of data for smartphone

Definitions: Portable, mobile
& ubiquitous computing

Distributed Computing

 Computer system is physically distributed

 User can access system/network from
various points.

 E.g. Unix cluster, WWW

 Huge 70’s revolution

 Distributed computing example:
 WPI students have a CCC account

 Log into CCC machines,

 Web surfing from different terminals on campus
(library, dorm room, zoolab, etc).

 Finer points: network is fixed, Human moves

Portable (Nomadic) Computing

 Basic idea:

 Network is fixed

 device moves and changes point of
attachment

 No computing while moving

 Portable (nomadic) computing example:
 Mary owns a laptop

 Plugs into her home network,

 At home: surfs web while watching TV.

 Every morning, brings laptop to school, plug into
WPI network, boot up!

 No computing while traveling to school

Mobile Computing Example

 Continuous computing/network access while moving,
automatic reconnection

 Mobile computing example:
 John has SPRINT PCS phone with web access, voice, SMS

messaging.

 He runs apps like facebook and foursquare, continuously
connected while walking around Boston

 Finer points:
 John and mobile users move

 Network deals with changing node location,
disconnection/reconnection to different cell towers

Ubiquitous Computing Example

 Ubiquitous computing: John is leaving home to go and meet his
friends. While passing the fridge, the fridge sends a message to his
shoe that milk is almost finished. When John is passing grocery
store, shoe sends message to glasses which displays “BUY milk”
message. John buys milk, goes home.

 Core idea: ubiquitous computing assistants actively help John

SmartPhone Sensing

Smartphone Sensing

 Smartphone used to sense human, environment

 Example: Human activity sensing (e.g. walking, driving,
climbing stairs, sitting, lying down)

 Example 2: Waze crowdsourced traffic

Sensor Processing

 Machine learning commonly used to process sensor data
 Action to be inferred is hand-labelled to generate training data

 Actual data is mined for combinations of sensor readings corresponding to
action

 Example: Smartphone detects user’s activity (e.g. walking, running ,
sitting,) by classifying accelerometer sensor data

What Can We Detect/Infer using These Sensors

Image Credit: Deepak Ganesan, UMass

Smartphone Sensing!!

Smartphone

Sensor data

Machine

Learning

Internet of Things (IoT)

IoT: Networked Smart Things (Devices)

 Smart things: Can be accessed, controlled over the network,
learns users patterns

Nest Smart thermostat

- Learns owners manual settings

- Turns down heat when not around

Smart Fridge

- See groceries in fridge from anywhere

Other Ubicomp Systems

 Smart Homes: Continuously monitors elders who live in smart
home, automatically dials 911 if elder ill, fall
 Falls kill many old people who live alone

 Smart buildings: Senses presence of people, ambient
temperature, people flow, dynamically adjusts heating/cooling
 Can save over 40% of energy bill

 Smart Cities: Real time data from Sensors embedded in street
used to direct drivers to empty parking spots
 About 30% of traffic jam caused by people hunting for parking

Introduction to Android

What is Android?

 Android is world’s leading mobile operating system
 Open source (https://source.android.com/setup/)

 Google:

 Owns Android, maintains it, extends it

 Distributes Android OS, developer tools, free to use

 Runs Android app market

https://source.android.com/setup/

SmartPhone OS

 Over 80% of all phones sold are smartphones

 Android share 86% worldwide

Source: Statista

Android Growth

 Over 2 billion Android users, March 2017 (ref: the verge)

 2.8 million apps on the Android app market (ref: statista.com)
 Games, organizers, banking, entertainment, etc

Android is Multi-Platform

Android runs on

all these devices

Tablet

In-car console
Smartwatch

Smartphone

Television

This Class: Focuses

Mostly on Smartphones!

Google Glass

(being redone)

Android for Mobile Computing and
Ubicomp

 Android for Mobile programmable modules
 Audio/video playback, taking pictures, database, location detection,

maps

 Android for Ubicomp programmable modules
 Sensors (temperature, humidity, light, etc), proximity

 Face detection, activity recognition, place detection, speech
recognition, speech-to-text, gesture detection, place type
understanding, etc

 Machine learning, deep learning

 Class will use Android 7 (“Nougat”)

 Officially released December 5, 2016

 Latest version is Android 8 (Oreo), released August 2017

 Below is Android version distribution as at January 8, 2018

Android Versions

Source: http://developer.android.com/about/dashboards/index.html

Android Developer
Environment

New Android Environment: Android Studio

 Old Android dev environment used Eclipse + plugins

 Google developed it’s own IDE called Android Studio

 Integrated development environment, cleaner interface, specifically for
Android Development (e.g. drag and drop app design)

 In December 2014, Google announced it will stop supporting Eclipse IDE

Where to Run Android App

 Android app can run on:
 Real phone (or device)

 Emulator (software version of phone)
Emulated phone

in Android Studio

Running Android App on Real Phone

 Need USB cord to copy app from development PC to phone

Emulator Pros and Cons (Vs Real Phone)

 Pros:
 Conveniently test app on basic hardware by clicking in software

 Easy to test app on various emulated devices (phones, tablets, TVs,
etc), various screen sizes

 Cons:
 Limited support, access to hardware, communications, sensors

 E.g. GPS, camera, video recording, making/receiving phone calls,
Bluetooth devices, USB devices, battery level, sensors, etc

 Slower than real phone

New Support for Sensors

 Can now emulate some sensors (e.g. location, accelerometer),
but still limited

Android Software Framework

Android Functionality as Apps

 Android functionality: collection of mini-applications (apps)

 Even dialer, keyboard, etc

Android Software Framework

 OS: Linux kernel, drivers

 Apps: programmed & UI in Java

 Libraries: OpenGL ES (graphics), SQLite (database), etc

Android
Software
Framework

 Each Android app runs in its own
security sandbox (VM, minimizes
complete system crashes)

 Android OS multi-user Linux
system

 Each app is a different user
(assigned unique Linux ID)

 Access control: only process with
the app’s user ID can access its
files

Ref: Introduction to Android Programming,

Annuzzi, Darcey & Conder

References

 Android App Development for Beginners videos by Bucky
Roberts (thenewboston)

 Ask A Dev, Android Wear: What Developers Need to Know,
https://www.youtube.com/watch?v=zTS2NZpLyQg

 Ask A Dev, Mobile Minute: What to (Android) Wear,
https://www.youtube.com/watch?v=n5Yjzn3b_aQ

 Busy Coder’s guide to Android version 4.4

 CS 65/165 slides, Dartmouth College, Spring 2014

 CS 371M slides, U of Texas Austin, Spring 2014

