
CS 4518 Mobile and Ubiquitous
Computing

Lecture 4: Data-Driven Views, Android
Components & Android Activity Lifecycle

Emmanuel Agu

Announcements

 Group formation: Projects 2, 3 and final project will be done in
groups
 Form groups latest today

 ALL members of the group should email me indicating their group

 List all team members

 Student unable to form groups, I will put you in groups

 Project 1 due tomorrow 11.59PM
 Tuesday, January 23, 2018, 11.59PM

 Test your final submissions in zoolab

 Submit via InstructAssist!

Data-Driven Layouts

Data-Driven Layouts
 LinearLayout, RelativeLayout, TableLayout, GridLayout useful for

positioning UI elements

 UI data is hard coded

 Other layouts dynamically composed from data (e.g. database)
 ListView, GridView, GalleryView

 Tabs with TabHost, TabControl

lorem

ipsum

dolor

amet

consectetuer

adipiscing

elit

morbi

Generate widgets

from data source

Data Driven Layouts

 May want to populate views from a data
source (XML file or database)

 Layouts that display repetitive child Views
from data source
 ListView

 GridView

 GalleryView

 ListView
 Rows of entries, pick item, vertical scroll

Data Driven Containers

 GridView
 List of items arranged in a number of

rows and columns

 GalleryView
 List with horizontal scrolling,

typically images

AdapterView
 ListView, GridView, and GalleryView are sub classes of AdapterView (variants)

 Adapter: generates widgets from a data source, populates layout

 E.g. Data is adapted into cells of GridView

 Most common Adapter types:
 CursorAdapter: read from database

 ArrayAdapter: read from resource (e.g. XML file)

lorem

ipsum

dolor

amet

consectetuer

adipiscing

elit

morbi

Data

Adapter

Adapters

 When using Adapter, a layout (XML format) is
defined for each child element (View)

 The adapter

 Reads in data (list of items)

 Creates Views (widgets) using layout for each
element in data source

 Fills the containing layout (List, Grid, Gallery) with
the created Views

 Child Views can be as simple as a TextView or
more complex layouts / controls

 simple views can be declared in a layout XML file

(e.g. android.R.layout)

Example: Creating ListView using
AdapterArray

 Task: Create listView (on right)
from strings below

Enumerated list

ListView

of items

Example: Creating ListView using
AdapterArray
 First create Layout file (e.g. LinearLayout)

Widget for

list of options

TextView Widget for

selected list item

Using ArrayAdapter

 Command used to wrap adapter around array of menu items
or java.util.List instance

 E.g. android.R.layout.simple_list_item_1 turns strings into
textView objects (widgets)

Context to use.

(e.g app’s activity) Resource ID of

View for formatting
Array of items

to display

Example: Creating
ListView using
AdapterArray

Set list adapter (Bridge

Data source and views)

Get handle to TextView

of Selected item

Change Text at top to that

of selected view when user clicks

on selection

Android App Components

Android App Components

 Typical Java program starts from main()

 Android app: No need to write a main

 Just define app components derived from base classes already
defined in Android

Android App Components

 4 main types of Android app components:

 Activity (already seen this)

 Service

 Content provider

 Broadcast receiver

Android OS
Android App

Activity

Service

Content Provider

Broadcast Receiver

Activity

Service

Content Provider

Broadcast Receiver

Base classes in

Android OS

Components in app

derived from Android

component classes

Recall: Activities

 Activity: main building block of Android UI

 Analogous to a window or dialog box in a
desktop application

 Apps
 have at least 1 activity that deals with UI

 Entry point of app similar to main() in C

 typically have multiple activities

 Example: A camera app
 Activity 1: to focus, take photo, start activity 2

 Activity 2: to present photo for viewing, save it

Fragments

 Fragments
 UI building blocks (pieces), can be arranged in Activities in different ways.

 Enables app to look different on different devices (e.g. phone vs tablet)

 An activity can contain multiple fragments that are organized
differently for phone vs tablet

 More later

Services
 Activities are short-lived, can be shut down anytime (e.g

when user presses back button)

 Services keep running in background

 Similar to Linux/Unix CRON job

 Example uses of services:
 Periodically check device’s GPS location

 Check for updates to RSS feed

 Minimal interaction with (independent of) any activity

 Typically an activity will control a service -- start it, pause it,
get data from it

 App Services are sub-class of Services class

Android Platform Services

 Android Services can either be on:
 Android Platform (local, on smartphone)

 Google (remote, in Google server)

 Android platform services examples (on smartphone):
 LocationManager: location-based services.

 ClipboardManager: access to device’s clipboard, cut-and-paste content

 DownloadManager: manages HTTP downloads in background

 FragmentManager: manages the fragments of an activity.

 AudioManager: provides access to audio and ringer controls.

Android services

on smartphone

Android services

In Google cloud

Google Services (In Google Cloud)

 Maps

 Location-based services

 Game Services

 Authorization APIs

 Google Plus

 Play Services

 In-app Billing

 Google Cloud Messaging

 Google Analytics

 Google AdMob ads

Typically need

Internet connection

Android services

on smartphone

Android services

In Google cloud

Content Providers

 Android apps can share data (e.g. User’s contacts) as content
provider

 Content Provider:
 Abstracts shareable data, makes it accessible through methods

 Applications can access that shared data by calling methods for the
relevant content provider

 E.g. Can query, insert, update, delete shared data (see below)

Shared data

Content Providers

 E.g. Data stored in Android Contacts app can be accessed by other apps

 Example: We can write an app that:

 Retrieve’s contacts list from contacts content provider

 Adds contacts to social networking (e.g. Facebook)

 Apps can also ADD to data through content provider. E.g. Add contact

 E.g. Our app can also share its data

 App Content Providers are sub-class of ContentProvider class

Broadcast Receivers

 The system, or applications, periodically broadcasts events

 Example broadcasts:

 Battery getting low

 Download completed

 New email arrived

 Any app can create broadcast receiver to listen for broadcasts, respond

 Our app can also initiate broadcasts

 Broadcast receivers typically

 Doesn’t interact with the UI

 Creates a status bar notification to alert the user when broadcast event occurs

 App Broadcast Receivers are sub-class of BroadcastReceiver class

Quiz

 Pedometer App

 Component A: continously counts user’s steps even when user closes app, does
other things on phone (e.g. youtube, calls)

 Component B: Displays user’s step count

 Component C: texts user’s friends (from contacts list) every day with their step totals

 What should component A be declared as (Activity, service, content provider,
broadcast receiver)

 What of component B?

 Component C?
Android App

Activity

Service

Content Provider

Broadcast Receiver

Android Activity LifeCycle

Starting Activities
 Android Activity callbacks invoked corresponding to app state.

 Examples:

 When activity is created, its onCreate() method invoked (like constructor)

 When activity is paused, its onPause() method invoked

 Callback methods also invoked to destroy Activity /app

Android OS

Android Activity

onCreate()

onStart()

onResume()

onPause()

……

Android OS

invokes specific

callbacks when

certain events occur

Activity Callbacks

 onCreate()

 onStart()

 onResume()

 onPause()

 onStop()

 onRestart()

 onDestroy()

Already saw this (initially called)

Android OS

Android App

onCreate()

onStart()

onResume()

onPause()

……

Android OS invokes specific

callbacks when specific events occur

IMPORTANT: Android OS invokes all

callbacks!!

Understanding Android Lifecycle

 Many disruptive things could happen while app is running

 Incoming call or text message, user switches to another app, etc

 Well designed app should NOT:
 Crash if interrupted, or user switches to other app

 Lose the user's state/progress (e.g state of chess game app) if they leave
your app and return later

 Crash or lose the user's progress when the screen rotates between
landscape and portrait orientation.

 E.g. Youtube video should continue at correct point after rotation

 To handle these situations, appropriate callback methods must be invoked
appropriately to “tidy up” before app gets bumped

https://developer.android.com/guide/components/activities/activity-lifecycle.html

OnCreate()
 Initializes activity once created

 Operations typically performed in onCreate() method:
 Inflate widgets and place them on screen

 (e.g. using layout files with setContentView())

 Getting references to inflated widgets (using findViewbyId())

 Setting widget listeners to handle user interaction

 E.g.

 Note: Android OS calls apps’ onCreate() method

Running App

 A running app is one that user is currently using
or interacting with

 Visible, in foreground

Paused App
 An app is paused if it is visible but no longer in

foreground

 E.g. blocked by a pop-up dialog box

 App’s onPause() method is called during transition
from running to paused state

Paused

Running

onPause() Method
 Typical actions taken in onPause() method

 Stop animations or CPU intensive tasks

 Stop listening for GPS, broadcast information

 Release handles to sensors (e.g GPS, camera)

 Stop audio and video if appropriate

Paused

Running

onResume(): Resuming Paused App

 A paused app resumes running if it becomes fully
visible and in foreground

 E.g. pop-up dialog box blocking it goes away

 App’s onResume() method is called during transition
from paused to running state
 Restart videos, animations, GPS checking, etc

Paused

Running

Stopped App

 An app is stopped if it no longer visible + no longer in
foreground

 E.g. user starts using another app

 App’s onStop() method is called during transition
from paused to stopped state

Running

onStop() Method

 An activity is stopped when:

 User receives phone call

 User starts another app

 Activity 1 launches new Activity 2

 Activity instance and variables of stopped app are
retained but no code is being executed by the
activity

 If activity is stopped, in onStop() method, well
behaved apps should

 save progress to enable seamless restart later

 Release all resources, save info (persistence)

Resuming Stopped App

 A stopped app can go back into running state if
becomes visible and in foreground

 App’s onStart() and onResume() methods called
to transition from stopped to running state

Running

Starting New App

 To start new app, app is launched

 App’s onCreate(), onStart() and
onResume() methods are called

 Afterwards new app is running

Logging Errors in Android

Logging Errors in Android

 Android can log and display various types of errors/warnings

 Error logging is in Log class of android.util package

import android.util.Log;

 Turn on logging of different message types by calling appropriate method

 Logged errors/warnings displayed in Android Studio window

Ref: Introduction to Android Programming,

Annuzzi, Darcey & Conder

QuizActivity.java

 A good way to understand Android
lifecycle methods is to print debug
messages when they are called

 E.g. print debug message from
onCreate method below

QuizActivity.java

 Debug (d) messages have the form

 E.g.

 Example declaration:

 Then declare string for TAG

QuizActivity: onCreate(Bundle) called

Tag Message

QuizActivity.java

 Putting it all together

QuizActivity.java

 Can overide more
lifecycle methods

 Print debug messages
from each method

 Superclass calls called
in each method

QuizActivity.java Debug Messages

 Launching GeoQuiz app creates, starts and resumes
an activity

 Pressing Back button destroys the activity (calls
onPause, onStop and onDestroy)

References

 Busy Coder’s guide to Android version 4.4

 CS 65/165 slides, Dartmouth College, Spring 2014

 CS 371M slides, U of Texas Austin, Spring 2014

