
CS 4518 Mobile and Ubiquitous
Computing

Lecture 4: Data-Driven Views, Android
Components & Android Activity Lifecycle

Emmanuel Agu

Announcements

 Group formation: Projects 2, 3 and final project will be done in
groups
 Form groups latest today

 ALL members of the group should email me indicating their group

 List all team members

 Student unable to form groups, I will put you in groups

 Project 1 due tomorrow 11.59PM
 Tuesday, January 23, 2018, 11.59PM

 Test your final submissions in zoolab

 Submit via InstructAssist!

Data-Driven Layouts

Data-Driven Layouts
 LinearLayout, RelativeLayout, TableLayout, GridLayout useful for

positioning UI elements

 UI data is hard coded

 Other layouts dynamically composed from data (e.g. database)
 ListView, GridView, GalleryView

 Tabs with TabHost, TabControl

lorem

ipsum

dolor

amet

consectetuer

adipiscing

elit

morbi

Generate widgets

from data source

Data Driven Layouts

 May want to populate views from a data
source (XML file or database)

 Layouts that display repetitive child Views
from data source
 ListView

 GridView

 GalleryView

 ListView
 Rows of entries, pick item, vertical scroll

Data Driven Containers

 GridView
 List of items arranged in a number of

rows and columns

 GalleryView
 List with horizontal scrolling,

typically images

AdapterView
 ListView, GridView, and GalleryView are sub classes of AdapterView (variants)

 Adapter: generates widgets from a data source, populates layout

 E.g. Data is adapted into cells of GridView

 Most common Adapter types:
 CursorAdapter: read from database

 ArrayAdapter: read from resource (e.g. XML file)

lorem

ipsum

dolor

amet

consectetuer

adipiscing

elit

morbi

Data

Adapter

Adapters

 When using Adapter, a layout (XML format) is
defined for each child element (View)

 The adapter

 Reads in data (list of items)

 Creates Views (widgets) using layout for each
element in data source

 Fills the containing layout (List, Grid, Gallery) with
the created Views

 Child Views can be as simple as a TextView or
more complex layouts / controls

 simple views can be declared in a layout XML file

(e.g. android.R.layout)

Example: Creating ListView using
AdapterArray

 Task: Create listView (on right)
from strings below

Enumerated list

ListView

of items

Example: Creating ListView using
AdapterArray
 First create Layout file (e.g. LinearLayout)

Widget for

list of options

TextView Widget for

selected list item

Using ArrayAdapter

 Command used to wrap adapter around array of menu items
or java.util.List instance

 E.g. android.R.layout.simple_list_item_1 turns strings into
textView objects (widgets)

Context to use.

(e.g app’s activity) Resource ID of

View for formatting
Array of items

to display

Example: Creating
ListView using
AdapterArray

Set list adapter (Bridge

Data source and views)

Get handle to TextView

of Selected item

Change Text at top to that

of selected view when user clicks

on selection

Android App Components

Android App Components

 Typical Java program starts from main()

 Android app: No need to write a main

 Just define app components derived from base classes already
defined in Android

Android App Components

 4 main types of Android app components:

 Activity (already seen this)

 Service

 Content provider

 Broadcast receiver

Android OS
Android App

Activity

Service

Content Provider

Broadcast Receiver

Activity

Service

Content Provider

Broadcast Receiver

Base classes in

Android OS

Components in app

derived from Android

component classes

Recall: Activities

 Activity: main building block of Android UI

 Analogous to a window or dialog box in a
desktop application

 Apps
 have at least 1 activity that deals with UI

 Entry point of app similar to main() in C

 typically have multiple activities

 Example: A camera app
 Activity 1: to focus, take photo, start activity 2

 Activity 2: to present photo for viewing, save it

Fragments

 Fragments
 UI building blocks (pieces), can be arranged in Activities in different ways.

 Enables app to look different on different devices (e.g. phone vs tablet)

 An activity can contain multiple fragments that are organized
differently for phone vs tablet

 More later

Services
 Activities are short-lived, can be shut down anytime (e.g

when user presses back button)

 Services keep running in background

 Similar to Linux/Unix CRON job

 Example uses of services:
 Periodically check device’s GPS location

 Check for updates to RSS feed

 Minimal interaction with (independent of) any activity

 Typically an activity will control a service -- start it, pause it,
get data from it

 App Services are sub-class of Services class

Android Platform Services

 Android Services can either be on:
 Android Platform (local, on smartphone)

 Google (remote, in Google server)

 Android platform services examples (on smartphone):
 LocationManager: location-based services.

 ClipboardManager: access to device’s clipboard, cut-and-paste content

 DownloadManager: manages HTTP downloads in background

 FragmentManager: manages the fragments of an activity.

 AudioManager: provides access to audio and ringer controls.

Android services

on smartphone

Android services

In Google cloud

Google Services (In Google Cloud)

 Maps

 Location-based services

 Game Services

 Authorization APIs

 Google Plus

 Play Services

 In-app Billing

 Google Cloud Messaging

 Google Analytics

 Google AdMob ads

Typically need

Internet connection

Android services

on smartphone

Android services

In Google cloud

Content Providers

 Android apps can share data (e.g. User’s contacts) as content
provider

 Content Provider:
 Abstracts shareable data, makes it accessible through methods

 Applications can access that shared data by calling methods for the
relevant content provider

 E.g. Can query, insert, update, delete shared data (see below)

Shared data

Content Providers

 E.g. Data stored in Android Contacts app can be accessed by other apps

 Example: We can write an app that:

 Retrieve’s contacts list from contacts content provider

 Adds contacts to social networking (e.g. Facebook)

 Apps can also ADD to data through content provider. E.g. Add contact

 E.g. Our app can also share its data

 App Content Providers are sub-class of ContentProvider class

Broadcast Receivers

 The system, or applications, periodically broadcasts events

 Example broadcasts:

 Battery getting low

 Download completed

 New email arrived

 Any app can create broadcast receiver to listen for broadcasts, respond

 Our app can also initiate broadcasts

 Broadcast receivers typically

 Doesn’t interact with the UI

 Creates a status bar notification to alert the user when broadcast event occurs

 App Broadcast Receivers are sub-class of BroadcastReceiver class

Quiz

 Pedometer App

 Component A: continously counts user’s steps even when user closes app, does
other things on phone (e.g. youtube, calls)

 Component B: Displays user’s step count

 Component C: texts user’s friends (from contacts list) every day with their step totals

 What should component A be declared as (Activity, service, content provider,
broadcast receiver)

 What of component B?

 Component C?
Android App

Activity

Service

Content Provider

Broadcast Receiver

Android Activity LifeCycle

Starting Activities
 Android Activity callbacks invoked corresponding to app state.

 Examples:

 When activity is created, its onCreate() method invoked (like constructor)

 When activity is paused, its onPause() method invoked

 Callback methods also invoked to destroy Activity /app

Android OS

Android Activity

onCreate()

onStart()

onResume()

onPause()

……

Android OS

invokes specific

callbacks when

certain events occur

Activity Callbacks

 onCreate()

 onStart()

 onResume()

 onPause()

 onStop()

 onRestart()

 onDestroy()

Already saw this (initially called)

Android OS

Android App

onCreate()

onStart()

onResume()

onPause()

……

Android OS invokes specific

callbacks when specific events occur

IMPORTANT: Android OS invokes all

callbacks!!

Understanding Android Lifecycle

 Many disruptive things could happen while app is running

 Incoming call or text message, user switches to another app, etc

 Well designed app should NOT:
 Crash if interrupted, or user switches to other app

 Lose the user's state/progress (e.g state of chess game app) if they leave
your app and return later

 Crash or lose the user's progress when the screen rotates between
landscape and portrait orientation.

 E.g. Youtube video should continue at correct point after rotation

 To handle these situations, appropriate callback methods must be invoked
appropriately to “tidy up” before app gets bumped

https://developer.android.com/guide/components/activities/activity-lifecycle.html

OnCreate()
 Initializes activity once created

 Operations typically performed in onCreate() method:
 Inflate widgets and place them on screen

 (e.g. using layout files with setContentView())

 Getting references to inflated widgets (using findViewbyId())

 Setting widget listeners to handle user interaction

 E.g.

 Note: Android OS calls apps’ onCreate() method

Running App

 A running app is one that user is currently using
or interacting with

 Visible, in foreground

Paused App
 An app is paused if it is visible but no longer in

foreground

 E.g. blocked by a pop-up dialog box

 App’s onPause() method is called during transition
from running to paused state

Paused

Running

onPause() Method
 Typical actions taken in onPause() method

 Stop animations or CPU intensive tasks

 Stop listening for GPS, broadcast information

 Release handles to sensors (e.g GPS, camera)

 Stop audio and video if appropriate

Paused

Running

onResume(): Resuming Paused App

 A paused app resumes running if it becomes fully
visible and in foreground

 E.g. pop-up dialog box blocking it goes away

 App’s onResume() method is called during transition
from paused to running state
 Restart videos, animations, GPS checking, etc

Paused

Running

Stopped App

 An app is stopped if it no longer visible + no longer in
foreground

 E.g. user starts using another app

 App’s onStop() method is called during transition
from paused to stopped state

Running

onStop() Method

 An activity is stopped when:

 User receives phone call

 User starts another app

 Activity 1 launches new Activity 2

 Activity instance and variables of stopped app are
retained but no code is being executed by the
activity

 If activity is stopped, in onStop() method, well
behaved apps should

 save progress to enable seamless restart later

 Release all resources, save info (persistence)

Resuming Stopped App

 A stopped app can go back into running state if
becomes visible and in foreground

 App’s onStart() and onResume() methods called
to transition from stopped to running state

Running

Starting New App

 To start new app, app is launched

 App’s onCreate(), onStart() and
onResume() methods are called

 Afterwards new app is running

Logging Errors in Android

Logging Errors in Android

 Android can log and display various types of errors/warnings

 Error logging is in Log class of android.util package

import android.util.Log;

 Turn on logging of different message types by calling appropriate method

 Logged errors/warnings displayed in Android Studio window

Ref: Introduction to Android Programming,

Annuzzi, Darcey & Conder

QuizActivity.java

 A good way to understand Android
lifecycle methods is to print debug
messages when they are called

 E.g. print debug message from
onCreate method below

QuizActivity.java

 Debug (d) messages have the form

 E.g.

 Example declaration:

 Then declare string for TAG

QuizActivity: onCreate(Bundle) called

Tag Message

QuizActivity.java

 Putting it all together

QuizActivity.java

 Can overide more
lifecycle methods

 Print debug messages
from each method

 Superclass calls called
in each method

QuizActivity.java Debug Messages

 Launching GeoQuiz app creates, starts and resumes
an activity

 Pressing Back button destroys the activity (calls
onPause, onStop and onDestroy)

References

 Busy Coder’s guide to Android version 4.4

 CS 65/165 slides, Dartmouth College, Spring 2014

 CS 371M slides, U of Texas Austin, Spring 2014

