
CS 4518 Mobile and Ubiquitous
Computing

Lecture 5: Rotating Device, Saving Data,
Intents and Fragments

Emmanuel Agu

Administrivia

 Moved back deadlines for projects 2, 3 and final project
 See updated schedule on class website

 Project 2 email out tonight, can be done on own computer
 Submit source code + video of your app

 Zoolab submission issues.

 E.g. Projects done on Mac generated errors in zoolab

 Project teams: list of teams will be email out tonight

 Final project specs/ground rules out on Monday

Rotating Device

Rotating Device: Using Different Layouts
 Rotating device (e.g. portrait to landscape) kills current

activity and creates new activity in landscape mode

 Rotation changes device configuration

 Device configuration: screen orientation/density/size,
keyboard type, dock mode, language, etc.

 Apps can specify different resources (e.g. XML layout
files, images) to use for different device configurations

 E.g. use different app layouts for portrait vs landscape
screen orientation

Use landscape

XML file

Use portrait

XML file

Rotating Device: Using Different Layouts

 Portrait device: use XML layout file in res/layout

 Landscape device: use XML layout file in res/layout-land/

 Copy XML layout file (activity_quiz.xml) from res/layout
to res/layout-land/ and tailor it

 If configuration changes, current activity destroyed,
onCreate -> setContentView (R.layout.activity_quiz)
called again

onCreate called whenever user

switches between portrait and landscape

Dead or Destroyed Activity

 onDestroy() called to destroy a stopped app

Saving State Data

Activity Destruction

 App may be destroyed

 On its own by calling finish

 If user presses back button

 Before Activity destroyed, system calls
onSaveInstanceState

 Saves state required to recreate Activity later
 E.g. Save current positions of game pieces

onSaveInstanceState: Saving App State

 Systems write info about views to Bundle

 Programmer must save other app-specific
information using onSaveInstanceState()
 E.g. board state in a board game such as

mastermind

onRestoreInstanceState(): Restoring State Data

Can restore state data in either method

 When an Activity recreated Bundle sent to onCreate and
onRestoreInstanceState()

 Can use either method to restore app state data

Saving Data Across Device Rotation

 Since rotation causes activity to be destroyed and new
one created, values of variables lost or reset

 To avoid losing or resetting values, save them using
onSaveInstanceState before activity is destroyed
 E.g. called before portrait layout is destroyed

 System calls onSaveInstanceState before onPause(),
onStop() and onDestroy()

Saving Data Across Device Rotation

 For example, to save the value of a variable
mCurrentIndex during rotation

 First, create a constant KEY_INDEX as a key for storing
data in the bundle

 Then override onSaveInstanceState method

Question

 Whenever I watch YouTube video on my
phone, if I receive a phone call and video
stops at 2:31, after call, when app
resumes, it should restart at 2:31.

 How do you think this is implemented?

 In which Android methods should code
be put into?

 How?

Intents

Intent

 Intent: a messaging object used by a component to request
action from another app or component

 3 main use cases for Intents

 Case 1 (Activity A starts Activity B, no result back):
 Call startActivity(), pass an Intent

 Intent describes Activity to start, plus any necessary data

Intent: Result Received Back

 Case 2 (Activity A starts Activity B, gets result back):
 Call startActivityForResult(), pass an Intent

 Separate Intent received in Activity A’s onActivityResult() callback

 Case 3 (Activity A starts a Service):
 E.g. Activity A starts service to download big file in the background

 Activity A calls StartService(), passes an Intent

 Intent describes Service to start, plus any necessary data

Implicit Vs Explicit Intents

 Explicit Intent: If components sending and receiving Intent
are in same app
 E.g. Activity A starts Activity B in same app

 Activity A explicitly says what Activity (B) that should be started

 Implicit Intent: If components sending and receiving Intent
are in different apps
 Activity B specifies what ACTION it needs done, doesn’t specify Activity

to do it

 Example of Action: take a picture, any camera app can handle this

Intent Example:
Starting Activity 2

from Activity 1

Allowing User to Cheat
Ref: Android Nerd Ranch (3rd edition) pg 91

 Goal: Allow user to cheat by getting answer to quiz

 Screen 2 pops up to show Answer

Activity 1 Activity 2

User clicks here

to cheat
Ask again.

Click here

to cheat

Correct

Answer

If user

cheated

Add Strings for Activity 1 and Activity 2 to
strings.xml

Create Empty Activity (for Activity 2) in Android Studio

Specify Name and XML file for Activity 2

Layout uses

activity_cheat.xml

Screen 2 Java code

in CheatActivity.java

Design Layout for Screen 2

Write XML Layout Code for Screen 2

Activity 2

Declare New Activity (CheatActivity)
in AndroidManifest.xml

Activity 2 (CheatActivity)

Activity 2 (CheatActivity)

Activity 1

Starting Activity 2 from Activity 1

 Activity 1 starts activity 2
 through the Android OS

 by calling startActivity(Intent)

 Passes Intent (object for communicating with Android OS)

 Intent specifies which (target) Activity Android
ActivityManager should start

Starting Activity 2 from Activity 1

 Intents have many different constructors. We will use form:

 Actual code looks like this

Parent

Activity
New Activity 2

Build Intent

Use Intent to Start new Activity

Implicit vs Explicit Intents

 Previous example is called an explicit intent
 Activity 1 and activity 2 are in same app

 If Activity 2 were in another app, an implicit intent would
have to be created instead

 Can also pass data between Activities 1 and 2
 E.g. Activity 1 can tell Activity 2 correct answer (True/False)

Passing Data Between Activities
 Need to pass answer (True/False from QuizActivity to CheatActivity)

 Pass answer as extra on the Intent passed into StartActivity

 Extras are arbitrary data calling activity can include with intent

 To add extra to Intent, use putExtra() command

 Encapsulate Intent creation into a method newIntent()

 When user clicks cheat button, build Intent, start new Activity

Passing Answer (True/False) as Intent Extra

Intent

 Activity receiving the Intent retrieves it using getBooleanExtra()

Passing Answer (True/False) as Intent Extra

Intent

(Answer = Extra)

Calls

getIntent()

Important: Read Android Nerd

Ranch (3rd edition) pg 91

Calls

startActivity(Intent)

Implicit Intents

 Implicit Intent: Does not name component to start.

 Specifies

 Action (what to do, example visit a web page)

 Data (to perform operation on, e.g. web page url)

 Typically, many components (apps) can take a given action
 E.g. Many phones have installed multiple apps that can view images

 System decides component to receive intent based on action, data, category

 Example Implicit Intent to share data

ACTION (No receiving Activity

specified)

Data type

Fragments

Recall: Fragments

 Sub-components of an Activity (screen)

 An activity can contain multiple fragments, organized differently
on different devices (e.g. phone vs tablet)

 Fragments need to be attached to Activities.

Fragments
Ref: Android Nerd Ranch (3rd ed), Ch 7, pg 123

 To illustrate fragments, we create new app CriminalIntent

 Used to record “office crimes” e.g. leaving plates in sink, etc

 Crime record includes:
 Title, date, photo

 List-detail app using fragments

 On tablet: show list + detail

 On phone: swipe to show next crime
Fragment 1
(list of Crimes)

Fragment 2
(Details of selected

Crime)

Fragments

 Activities can contain multiple fragments

 Fragment’s views are inflated from a
layout file

 Can rearrange fragments as desired on an
activity
 i.e. different arrangement on phone vs tablet

 Initially, develop detail view of CriminalIntent using
Fragments

Starting Criminal Intent

Final Look of CriminalIntent Start small

Develop detail view using Fragments

Starting Criminal Intent

 Crime: holds record of 1 office crime. Has

 Title e.g. “Someone stole my yogurt!”

 ID: unique identifier of crime

 CrimeFragment: UI fragment to display Crime Details

 CrimeActivity: Activity that contains CrimeFragment

Next: Create CrimeActivity

Create CrimeActivity in Android Studio

Creates CrimeActivity.java

Formatted using

activity_crime.xml

Fragment Hosted by an Activity

 Each fragment must be hosted by an Activity

 To host a UI fragment, an activity must

 Define a spot in its layout for the fragment

 Manage the lifecycle of the fragment instance (next)

 E.g.: CrimeActivity defines “spot” for CrimeFragment

Fragment’s Life Cycle

 Fragment’s lifecycle similar to activity
lifecycle
 Has states running, paused and stopped

 Also has some similar activity lifecycle
methods (e.g. onPause(), onStop(), etc)

 Key difference:
 Android OS calls Activity’s onCreate,

onPause(), etc

 Fragment’s onCreateView(), onPause(), etc
called by hosting activity NOT Android OS!

 E.g. Fragment has onCreateView

Hosting UI Fragment in an Activity

 2 options. Can add fragment to either

 Activity’s XML file (layout fragment), or

 Activity’s .java file (more complex but more flexible)

 We will add fragment to activity’s XML file now

 First, create a spot for the fragment’s view in CrimeActivity’s XML layout

Creating a UI Fragment

 Creating Fragment is similar to creating activity
1. Define widgets in a layout (XML) file

2. Create java class and specify layout file as XML file above

3. Get references of inflated widgets in java file (findviewbyId), etc

 XML layout file for CrimeFragment (fragment_crime.xml)

 In CrimeFragment Override CrimeFragment’s onCreateView() function

 Note: Fragment’s view inflated in Fragment.onCreateView(), NOT onCreate

Java File for CrimeFragment

Format Fragment

using fragment_crime.xml

Adding UI Fragment to FragmentManager

 An activity adds new fragment to activity using FragmentManager

 FragmentManager

 Manages fragments

 Adds fragment’s views to activity’s view

 Handles

 List of fragments

 Back stack of fragment transactions

Find Fragment

using its ID

Add Fragment

to activity’s view

Interactions with FragmentManager are

done using transactions

Examining Fragment’s Lifecycle

 FragmentManager calls fragment
lifecycle methods

 onAttach(), onCreate() and
onCreateView() called when a fragment
is added to FragmentManager

1. First create fragment

..… then wait for Activity to add fragment

1.

Examining Fragment’s Lifecycle

 FragmentManager calls fragment
lifecycle methods

 onAttach(), onCreate() and
onCreateView() called when a fragment
is added to FragmentManager

 onActivityCreated() called after hosting
activity’s onCreate() method is executed

 If fragment is added to already running
Activity then onAttach(), onCreate(),
onCreateView(), onActivityCreated(),
onStart() and then onResume() called

References

 Android Nerd Ranch, 1st edition

 Busy Coder’s guide to Android version 4.4

 CS 65/165 slides, Dartmouth College, Spring 2014

 CS 371M slides, U of Texas Austin, Spring 2014

