
CS 4518 Mobile and Ubiquitous
Computing

Lecture 5: Rotating Device, Saving Data,
Intents and Fragments

Emmanuel Agu

Administrivia

 Moved back deadlines for projects 2, 3 and final project
 See updated schedule on class website

 Project 2 email out tonight, can be done on own computer
 Submit source code + video of your app

 Zoolab submission issues.

 E.g. Projects done on Mac generated errors in zoolab

 Project teams: list of teams will be email out tonight

 Final project specs/ground rules out on Monday

Rotating Device

Rotating Device: Using Different Layouts
 Rotating device (e.g. portrait to landscape) kills current

activity and creates new activity in landscape mode

 Rotation changes device configuration

 Device configuration: screen orientation/density/size,
keyboard type, dock mode, language, etc.

 Apps can specify different resources (e.g. XML layout
files, images) to use for different device configurations

 E.g. use different app layouts for portrait vs landscape
screen orientation

Use landscape

XML file

Use portrait

XML file

Rotating Device: Using Different Layouts

 Portrait device: use XML layout file in res/layout

 Landscape device: use XML layout file in res/layout-land/

 Copy XML layout file (activity_quiz.xml) from res/layout
to res/layout-land/ and tailor it

 If configuration changes, current activity destroyed,
onCreate -> setContentView (R.layout.activity_quiz)
called again

onCreate called whenever user

switches between portrait and landscape

Dead or Destroyed Activity

 onDestroy() called to destroy a stopped app

Saving State Data

Activity Destruction

 App may be destroyed

 On its own by calling finish

 If user presses back button

 Before Activity destroyed, system calls
onSaveInstanceState

 Saves state required to recreate Activity later
 E.g. Save current positions of game pieces

onSaveInstanceState: Saving App State

 Systems write info about views to Bundle

 Programmer must save other app-specific
information using onSaveInstanceState()
 E.g. board state in a board game such as

mastermind

onRestoreInstanceState(): Restoring State Data

Can restore state data in either method

 When an Activity recreated Bundle sent to onCreate and
onRestoreInstanceState()

 Can use either method to restore app state data

Saving Data Across Device Rotation

 Since rotation causes activity to be destroyed and new
one created, values of variables lost or reset

 To avoid losing or resetting values, save them using
onSaveInstanceState before activity is destroyed
 E.g. called before portrait layout is destroyed

 System calls onSaveInstanceState before onPause(),
onStop() and onDestroy()

Saving Data Across Device Rotation

 For example, to save the value of a variable
mCurrentIndex during rotation

 First, create a constant KEY_INDEX as a key for storing
data in the bundle

 Then override onSaveInstanceState method

Question

 Whenever I watch YouTube video on my
phone, if I receive a phone call and video
stops at 2:31, after call, when app
resumes, it should restart at 2:31.

 How do you think this is implemented?

 In which Android methods should code
be put into?

 How?

Intents

Intent

 Intent: a messaging object used by a component to request
action from another app or component

 3 main use cases for Intents

 Case 1 (Activity A starts Activity B, no result back):
 Call startActivity(), pass an Intent

 Intent describes Activity to start, plus any necessary data

Intent: Result Received Back

 Case 2 (Activity A starts Activity B, gets result back):
 Call startActivityForResult(), pass an Intent

 Separate Intent received in Activity A’s onActivityResult() callback

 Case 3 (Activity A starts a Service):
 E.g. Activity A starts service to download big file in the background

 Activity A calls StartService(), passes an Intent

 Intent describes Service to start, plus any necessary data

Implicit Vs Explicit Intents

 Explicit Intent: If components sending and receiving Intent
are in same app
 E.g. Activity A starts Activity B in same app

 Activity A explicitly says what Activity (B) that should be started

 Implicit Intent: If components sending and receiving Intent
are in different apps
 Activity B specifies what ACTION it needs done, doesn’t specify Activity

to do it

 Example of Action: take a picture, any camera app can handle this

Intent Example:
Starting Activity 2

from Activity 1

Allowing User to Cheat
Ref: Android Nerd Ranch (3rd edition) pg 91

 Goal: Allow user to cheat by getting answer to quiz

 Screen 2 pops up to show Answer

Activity 1 Activity 2

User clicks here

to cheat
Ask again.

Click here

to cheat

Correct

Answer

If user

cheated

Add Strings for Activity 1 and Activity 2 to
strings.xml

Create Empty Activity (for Activity 2) in Android Studio

Specify Name and XML file for Activity 2

Layout uses

activity_cheat.xml

Screen 2 Java code

in CheatActivity.java

Design Layout for Screen 2

Write XML Layout Code for Screen 2

Activity 2

Declare New Activity (CheatActivity)
in AndroidManifest.xml

Activity 2 (CheatActivity)

Activity 2 (CheatActivity)

Activity 1

Starting Activity 2 from Activity 1

 Activity 1 starts activity 2
 through the Android OS

 by calling startActivity(Intent)

 Passes Intent (object for communicating with Android OS)

 Intent specifies which (target) Activity Android
ActivityManager should start

Starting Activity 2 from Activity 1

 Intents have many different constructors. We will use form:

 Actual code looks like this

Parent

Activity
New Activity 2

Build Intent

Use Intent to Start new Activity

Implicit vs Explicit Intents

 Previous example is called an explicit intent
 Activity 1 and activity 2 are in same app

 If Activity 2 were in another app, an implicit intent would
have to be created instead

 Can also pass data between Activities 1 and 2
 E.g. Activity 1 can tell Activity 2 correct answer (True/False)

Passing Data Between Activities
 Need to pass answer (True/False from QuizActivity to CheatActivity)

 Pass answer as extra on the Intent passed into StartActivity

 Extras are arbitrary data calling activity can include with intent

 To add extra to Intent, use putExtra() command

 Encapsulate Intent creation into a method newIntent()

 When user clicks cheat button, build Intent, start new Activity

Passing Answer (True/False) as Intent Extra

Intent

 Activity receiving the Intent retrieves it using getBooleanExtra()

Passing Answer (True/False) as Intent Extra

Intent

(Answer = Extra)

Calls

getIntent()

Important: Read Android Nerd

Ranch (3rd edition) pg 91

Calls

startActivity(Intent)

Implicit Intents

 Implicit Intent: Does not name component to start.

 Specifies

 Action (what to do, example visit a web page)

 Data (to perform operation on, e.g. web page url)

 Typically, many components (apps) can take a given action
 E.g. Many phones have installed multiple apps that can view images

 System decides component to receive intent based on action, data, category

 Example Implicit Intent to share data

ACTION (No receiving Activity

specified)

Data type

Fragments

Recall: Fragments

 Sub-components of an Activity (screen)

 An activity can contain multiple fragments, organized differently
on different devices (e.g. phone vs tablet)

 Fragments need to be attached to Activities.

Fragments
Ref: Android Nerd Ranch (3rd ed), Ch 7, pg 123

 To illustrate fragments, we create new app CriminalIntent

 Used to record “office crimes” e.g. leaving plates in sink, etc

 Crime record includes:
 Title, date, photo

 List-detail app using fragments

 On tablet: show list + detail

 On phone: swipe to show next crime
Fragment 1
(list of Crimes)

Fragment 2
(Details of selected

Crime)

Fragments

 Activities can contain multiple fragments

 Fragment’s views are inflated from a
layout file

 Can rearrange fragments as desired on an
activity
 i.e. different arrangement on phone vs tablet

 Initially, develop detail view of CriminalIntent using
Fragments

Starting Criminal Intent

Final Look of CriminalIntent Start small

Develop detail view using Fragments

Starting Criminal Intent

 Crime: holds record of 1 office crime. Has

 Title e.g. “Someone stole my yogurt!”

 ID: unique identifier of crime

 CrimeFragment: UI fragment to display Crime Details

 CrimeActivity: Activity that contains CrimeFragment

Next: Create CrimeActivity

Create CrimeActivity in Android Studio

Creates CrimeActivity.java

Formatted using

activity_crime.xml

Fragment Hosted by an Activity

 Each fragment must be hosted by an Activity

 To host a UI fragment, an activity must

 Define a spot in its layout for the fragment

 Manage the lifecycle of the fragment instance (next)

 E.g.: CrimeActivity defines “spot” for CrimeFragment

Fragment’s Life Cycle

 Fragment’s lifecycle similar to activity
lifecycle
 Has states running, paused and stopped

 Also has some similar activity lifecycle
methods (e.g. onPause(), onStop(), etc)

 Key difference:
 Android OS calls Activity’s onCreate,

onPause(), etc

 Fragment’s onCreateView(), onPause(), etc
called by hosting activity NOT Android OS!

 E.g. Fragment has onCreateView

Hosting UI Fragment in an Activity

 2 options. Can add fragment to either

 Activity’s XML file (layout fragment), or

 Activity’s .java file (more complex but more flexible)

 We will add fragment to activity’s XML file now

 First, create a spot for the fragment’s view in CrimeActivity’s XML layout

Creating a UI Fragment

 Creating Fragment is similar to creating activity
1. Define widgets in a layout (XML) file

2. Create java class and specify layout file as XML file above

3. Get references of inflated widgets in java file (findviewbyId), etc

 XML layout file for CrimeFragment (fragment_crime.xml)

 In CrimeFragment Override CrimeFragment’s onCreateView() function

 Note: Fragment’s view inflated in Fragment.onCreateView(), NOT onCreate

Java File for CrimeFragment

Format Fragment

using fragment_crime.xml

Adding UI Fragment to FragmentManager

 An activity adds new fragment to activity using FragmentManager

 FragmentManager

 Manages fragments

 Adds fragment’s views to activity’s view

 Handles

 List of fragments

 Back stack of fragment transactions

Find Fragment

using its ID

Add Fragment

to activity’s view

Interactions with FragmentManager are

done using transactions

Examining Fragment’s Lifecycle

 FragmentManager calls fragment
lifecycle methods

 onAttach(), onCreate() and
onCreateView() called when a fragment
is added to FragmentManager

1. First create fragment

..… then wait for Activity to add fragment

1.

Examining Fragment’s Lifecycle

 FragmentManager calls fragment
lifecycle methods

 onAttach(), onCreate() and
onCreateView() called when a fragment
is added to FragmentManager

 onActivityCreated() called after hosting
activity’s onCreate() method is executed

 If fragment is added to already running
Activity then onAttach(), onCreate(),
onCreateView(), onActivityCreated(),
onStart() and then onResume() called

References

 Android Nerd Ranch, 1st edition

 Busy Coder’s guide to Android version 4.4

 CS 65/165 slides, Dartmouth College, Spring 2014

 CS 371M slides, U of Texas Austin, Spring 2014

