
CS 4518 Mobile and Ubiquitous
Computing

Lecture 8: Sensors, Step Counting & Activity
Recognition

Emmanuel Agu

Administrivia

 Project 3 mailed out Saturday night, due Friday 11.59PM

 Groups should submit 1-slide on their final project (due
11.59PM tonight)

 Thursday: further discussion of final project proposal,
presentation (on Monday)

Android Sensors

What is a Sensor?

 Converts physical quantity (e.g. light, acceleration,
magnetic field) into a signal

 Example: accelerometer converts acceleration along X,Y,Z
axes into signal

So What?

 Raw sensor data can be processed into useful info

 Example: Raw accelerometer data can be processed/classified to
infer user’s activity (e.g. walking running, etc)

 Voice samples can be processed/classified to infer whether
speaker is nervous or not

Raw accelerometer

readings

Walking

Running

Jumping

Step count

Calories burned

Falling

Machine learning

Feature extraction

and classification

Android Sensors

 Microphone (sound)

 Camera

 Temperature

 Location (GPS, A-GPS)

 Accelerometer

 Gyroscope (orientation)

 Proximity

 Pressure

 Light

 Different phones do not

have all sensor types!!

AndroSensor Android

Sensor Box

Android Sensor Framework
http://developer.android.com/guide/topics/sensors/sensors_overview.html

 Enables apps to:

 Access sensors available on device and

 Acquire raw sensor data

 Specifically, using the Android Sensor Framework, you can:
 Determine which sensors are available on phone

 Determine capabilities of sensors (e.g. max. range, manufacturer, power
requirements, resolution)

 Register and unregister sensor event listeners

 Acquire raw sensor data and define data rate

Android Sensor Framework
http://developer.android.com/guide/topics/sensors/sensors_overview.html

 Android sensors can be either hardware or software

 Hardware sensor:

 physical components built into phone,

 Example: temperature

 Software sensor (or virtual sensor):

 Not physical device

 Derives their data from one or more hardware sensors

 Example: gravity sensor

Sensor Types Supported by Android

 TYPE_PROXIMITY
 Measures an object’s

proximity to device’s screen

 Common uses: determine if
handset is held to ear

 TYPE_GYROSCOPE
 Measures device’s rate of rotation

around X,Y,Z axes in rad/s

 Common uses: rotation detection
(spin, turn, etc)

Types of Sensors

Sensor HW/SW Description Use

TYPE_ACCELEROMETER HW Rate of change of velocity Shake, Tilt

TYPE_AMBIENT_TEMPERATURE HW Room temperature Monitor Room temp

TYPE_GRAVITY SW/HW Gravity along X,Y,Z axes Shake, Tilt

TYPE_GYROSCOPE HW Rate of rotation Spin, Turn

TYPE_LIGHT HW Illumination level Control Brightness

TYPE_LINEAR_ACCELERATION SW/HW Acceleration along X,Y,Z – g Accel. Along an axis

TYPE_MAGNETIC_FIELD HW Magnetic field Create Compass

TYPE_ORIENTATION SW Rotation about X,Y,Z axes Device position

TYPE_PRESSURE HW Air pressure Air pressure

TYPE_PROXIMITY HW Any object close to device? Phone close to face?

TYPE_RELATIVE_HUMIDITY HW % of max possible humidity Dew point

TYPE_ROTATION_VECTOR SW/HW Device’s rotation vector Device’s orientation

TYPE_TEMPERATURE HW Phone’s temperature Monitor temp

2 New Hardware Sensor introduced in Android 4.4

 TYPE_STEP_DETECTOR
 Triggers sensor event each time user takes a step (single step)

 Delivered event has value of 1.0 + timestamp of step

 TYPE_STEP_COUNTER
 Also triggers a sensor event each time user takes a step

 Delivers total accumulated number of steps since this sensor was first
registered by an app,

 Tries to eliminate false positives

 Common uses: step counting, pedometer apps

 Requires hardware support, available in Nexus 5

 Alternatively available through Google Play Services (more later)

Sensor Programming

 Sensor framework is part of android.hardware

 Classes and interfaces include:
 SensorManager

 Sensor

 SensorEvent

 SensorEventListener

 These sensor-APIs used for:
1. Identifying sensors and sensor capabilities

2. Monitoring sensor events

Sensor Events and Callbacks

 Sensors send events to sensor
manager asynchronously, when
new data arrives

 General approach:
 App registers callbacks

 SensorManager notifies app of
sensor event whenever new data
arrives (or accuracy changes)

Sensor

 A class that can be used to create
instance of a specific sensor

 Has methods used to determine a
sensor’s capabilities

 Included in sensor event object

SensorEvent

 Android system sensor event information as a sensor event
object

 Sensor event object includes:
 Sensor: Type of sensor that

generated the event

 Values: Raw sensor data

 Accuracy: Accuracy of the data

 Timestamp: Event timestamp

Sensor value depends

on sensor type

Sensor Values
Depend on
Sensor Type

Sensor Values Depend on Sensor Type

SensorEventListener

 Interface used to create 2 callbacks that receive
notifications (sensor events) when:

 Sensor values change (onSensorChange()) or

 When sensor accuracy changes (onAccuracyChanged())

Sensor API Tasks

 Sensor API Task 1: Identifying sensors and their capabilities

 Why identify sensor and their capabilities at runtime?

 Disable app features using sensors not present, or

 Choose sensor implementation with best performance

 Sensor API Task 2: Monitor sensor events

 Why monitor sensor events?

 To acquire raw sensor data

 Sensor event occurs every time sensor detects change in parameters
it is measuring

Sensor Availability

 Different sensors are available on different Android versions

Identifying Sensors and Sensor Capabilities

 First create instance of SensorManager by calling
getSystemService() and passing in SENSOR_SERVICE argument

 Then list sensors available on device by calling getSensorList()

 To list particular type, use TYPE_GYROSCOPE, TYPE_GRAVITY, etc

http://developer.android.com/guide/topics/sensors/sensors_overview.html

Checking if Phone has at least one of particular Sensor Type

 Device may have multiple sensors of a particular type.
 E.g. multiple magnetometers

 If multiple sensors of a given type exist, one of them must be designated “the
default sensor” of that type

 To determine if specific sensor type exists use getDefaultSensor()

 Example: To check whether device has at least one magnetometer

Example: Monitoring Light Sensor Data

 Goal: Monitor light sensor data using onSensorChanged(), display it in a
TextView defined in main.xml

Create instance of

Sensor manager

Get default

Light sensor

Called by Android system when accuracy of sensor being monitored changes

Example: Monitoring Light Sensor Data (Contd)

Get new light sensor value

Unregister sensor if app

is no longer visible to

reduce battery drain

Register sensor when app becomes visible

Called by Android system to report new sensor value

Provides SensorEvent object containing new sensor data

Handling Different Sensor Configurations

 Different phones have different sensors built in

 E.g. Motorola Xoom has pressure sensor, Samsung Nexus S doesn’t

 If app uses a specific sensor, how to ensure this sensor exists on target device?

 Two options

 Option 1: Detect device sensors at runtime, enable/disable app features as
appropriate

 Option 2: Use AndroidManifest.xml entries to ensure that only devices possessing
required sensor can see app on Google Play

 E.g. following manifest entry in AndroidManifest ensures that only devices with
accelerometers will see this app on Google Play

Option 1: Detecting Sensors at Runtime

 Following code checks if device has at least one pressure sensor

Example Step Counter App

 Goal: Track user’s steps, display it in TextView

 Note: Phone hardware must support step counting

https://theelfismike.wordpress.com/2013/11/10/android-4-4-kitkat-step-detector-code/

Example Step Counter App (Contd)

https://theelfismike.wordpress.com/2013/11/10/android-4-4-kitkat-step-detector-code/

Example Step Counter App (Contd)

https://theelfismike.wordpress.com/2013/11/10/android-4-4-kitkat-step-detector-code/

Step Counting
(How Step Counting Works)

Sedentary Lifestyle

 Sedentary lifestyle
 increases risk of diabetes, heart disease, dying earlier, etc

 Kills more than smoking!!

 Categorization of sedentary lifestyle based on step count by paper:
 “Catrine Tudor-Locke, Cora L. Craig, John P. Thyfault, and John C. Spence, A step-defined

sedentary lifestyle index: < 5000 steps/day”, Appl. Physiol. Nutr. Metab. 38: 100–114 (2013)

Step Count Mania

 Everyone is crazy about step count these days

 Pedometer apps, pedometers, fitness trackers, etc

 Tracking makes user aware of activity levels, motivates them to exercise more

How does a Pedometer Detect/Count Steps
Ref: Deepak Ganesan, Ch 2 Designing a Pedometer and Calorie Counter

 As example of processing Accelerometer data

 Walking or running results in motion along the 3 body axes (forward,
vertical, side)

 Smartphone has similar axes
 Alignment depends on phone orientation

The Nature of Walking
Ref: Deepak Ganesan, Ch 2 Designing a Pedometer and Calorie Counter

 Vertical and forward acceleration increases/decreases during different
phases of walking

 Walking causes a large periodic spike in one of the accelerometer axes

 Which axes (x, y or z) and magnitude depends on phone orientation

Step Detection Algorithm
Ref: Deepak Ganesan, Ch 2 Designing a Pedometer and Calorie Counter

 Step 1: smoothing
 Signal looks choppy

 Smooth by replacing each sample with average of current, prior and next sample (Window of 3)

 Step 2: Dynamic Threshold Detection
 Focus on accelerometer axis with largest peak

 Would like a threshold such that each crossing is a step

 But cannot assume fixed threshold (magnitude depends on phone orientation)

 Track min, max values observed every 50 samples

 Compute dynamic threshold: (Max + Min)/2

Step Detection Algorithm
Ref: Deepak Ganesan, Ch 2 Designing a Pedometer and Calorie Counter

 A step is
 indicated by crossings of dynamic threshold

 Defined as negative slope (sample_new < sample_old) when smoothed waveform
crosses dynamic threshold

Steps

Step Detection Algorithms
Ref: Deepak Ganesan, Ch 2 Designing a Pedometer and Calorie Counter

 Problem: vibrations (e.g. mowing lawn, plane taking off) could be counted as a
step

 Optimization: Fix by exploiting periodicity of walking/running

 Assume people can:
 Run: 5 steps per second => 0.2 seconds per step

 Walk: 1 step every 2 seconds => 2 seconds per step

 So, eliminate “negative crossings” that occur outside period [0.2 – 2 seconds] (e.g. vibrations)

Step Detection Algorithms
Ref: Deepak Ganesan, Ch 2 Designing a Pedometer and Calorie Counter

 Previous step detection algorithm is simple.

 Can use more sophisticated signal processing algorithms for smoothing

 Frequency domain processing (E.g. Fourier transform + low-pass filter)

Estimate Distance Traveled
Ref: Deepak Ganesan, Ch 2 Designing a Pedometer and Calorie Counter

 Calculate distance covered based on number of steps taken

Distance = number of steps × distance per step (1)

 Distance per step (stride) depends on user’s height (taller people, longer strides)

 Using person’s height, can estimate their stride, then number of steps taken per
2 seconds

Estimating Calories Burned
Ref: Deepak Ganesan, Ch 2 Designing a Pedometer and Calorie Counter

 To estimate speed, remember that speed = distance/time. Thus,

Speed (in m/s) = (no. steps per 2 s × stride (in meters))/2s (2)

 Can also convert to calorie expenditure, which depends on many factors E.g
 Body weight, workout intensity, fitness level, etc

 Rough relationship given in table

 Expressed as an equation

 First convert from speed in km/h to m/s
Calories (C/kg/h) = 1.25 × speed (m/s) × 3600/1000 = 4.5 × speed (m/s) (4)

Calories (C/kg/h) = 1.25 × running speed (km/h) (3)

x / y = 1.25

Introduction to Activity
Recognition

Activity Recognition

 Goal: Want our app to detect what activity the user is doing?

 Classification task: which of these 6 activities is user doing?
 Walking,

 Jogging,

 Ascending stairs,

 Descending stairs,

 Sitting,

 Standing

 Typically, use machine learning classifers to classify user’s
accelerometer signals

Activity Recognition Overview

Machine

Learning

Classifier

Walking

Running

Climbing Stairs

Gather Accelerometer data

Classify

Accelerometer

data

Example Accelerometer Data for Activities

Example Accelerometer Data for Activities

Applications of Activity
Recognition

Recall: Activity Recognition

 Goal: Want our app to detect what activity the user is doing?

 Classification task: which of these 6 activities is user doing?
 Walking,

 Jogging,

 Ascending stairs,

 Descending stairs,

 Sitting,

 Standing

 Typically, use machine learning classifers to classify user’s
accelerometer signals

Applications of Activity Recognition (AR)
Ref: Lockhart et al, Applications of Mobile Activity recognition

 Fitness Tracking:
 Initially:

 Physical activity type,

 Distance travelled,

 Calories burned

 Newer features:

 Stairs climbed,

 Physical activity

(duration + intensity)

 Activity type logging + context
e.g. Ran 0.54 miles/hr faster
during morning runs

 Sleep tracking

 Activity history
Note: AR refers to algorithm

But could run on a range of devices

(smartphones, wearables, e.g. fitbit)

 Health monitoring: How well is patient performing activity?

 Make clinical monitoring pervasive, continuous, real world!!

 Gather context information (e.g. what makes condition worse/better?)

 E.g. timed up and go test

 Show patient contexts that worsen condition => Change behavior

 E.g. walking in narror hallways worsens gait freeze

Applications of Activity Recognition (AR)
Ref: Lockhart et al, Applications of Mobile Activity recognition

COPD, Walk tests in the wild

Parkinsons disease

Gait freezing

Question: What

data would you need

to build PD gait classifier?

From what types of subjects?

 Fall: Leading cause of death for seniors

 Fall detection: Smartphone/watch, wearable detects senior
who has fallen, alert family
 Text message, email, call relative

Applications of Activity Recognition
Ref: Lockhart et al, Applications of Mobile Activity recognition

Fall detection + prediction

Applications of Activity Recognition (AR)
Ref: Lockhart et al, Applications of Mobile Activity recognition

 Context-Aware Behavior:
 In-meeting? => Phone switches to silent mode

 Exercising? => Play song from playlist, use larger font sizes for text

 Arrived at work? => download email

 Study found that messages delivered when transitioning between activities
better received

 Adaptive Systems to Improve User Experience:
 Walking, running, riding bike? => Turn off Bluetooth, WiFi (save power)

 Can increase battery life up to 5x

Applications of AR
Ref: Lockhart et al, Applications of Mobile Activity recognition

 Smart home:
 Determine what activities people in the home are doing,

 Why? infer illness, wellness, patterns, intrusion (security), etc

 E.g. TV automatically turns on at about when you usually lie on the couch

Applications of AR: 3rd Party Apps
Ref: Lockhart et al, Applications of Mobile Activity recognition

 Targeted Advertising:
 AR helps deliver more relevant ads

 E.g user runs a lot => Get exercise clothing ads

 Goes to pizza places often + sits there => Get pizza ads

Applications of AR: 3rd Party Apps
Ref: Lockhart et al, Applications of Mobile Activity recognition

 Research Platforms for Data Collection:
 E.g. public health officials want to know how much time various

people (e.g. students) spend sleeping, walking, exercising, etc

 Mobile AR: inexpensive, automated data collection

 E.g. Stanford Inequality project: Analyzed physical activity of 700k
users in 111 countries using smartphone AR data

 http://activityinequality.stanford.edu/

Applications of AR: 3rd Party Apps
Ref: Lockhart et al, Applications of Mobile Activity recognition

 Track, manage staff on-demand:
 E.g. at hospital, determine “availability of nurses”, assign them to

new jobs/patients/surgeries/cases

Applications of AR: Social Networking
Ref: Lockhart et al, Applications of Mobile Activity recognition

 Activity-Based Social Networking:
 Automatically connect users who do same activities + live close together

Applications of AR: Social Networking
Ref: Lockhart et al, Applications of Mobile Activity recognition

 Activity-Based Place Tagging:
 Automatically “popular” places where users perform same activity

 E.g. Park street is popular for runners (activity-based maps)

 Automatic Status updates:
 E.g. Bob is sleeping

 Tracy is jogging along Broadway with track team

 Privacy/security concerns => Different Levels of details for different friends

Activity Recognition
Using Google API

Activity Recognition

 Activity Recognition? Detect what user is doing?
 Part of user’s context

 Examples: sitting, running, driving, walking

 Why? App can adapt it’s behavior based on user behavior

 E.g. If user is driving, don’t send notifications

https://www.youtube.com/watch?v=S8sugXgUVEI

https://www.youtube.com/watch?v=S8sugXgUVEI
https://www.youtube.com/watch?v=S8sugXgUVEI

Google Activity Recognition API

 API to detect smartphone user’s current activity

 Programmable, can be used by your Android app

 Currently detects 8 states:
 In vehicle

 On Bicycle

 On Foot

 Running

 Walking

 Still

 Tilting

 Unknown

Google Activity Recognition API

 Deployed as part of Google Play Services

Machine Learning

Classifiers

Activity Recognition API

Google Play Services

Your Android App

Activity Recognition Using AR API
Ref: How to Recognize User Activity with Activity Recognition by Paul Trebilcox-Ruiz on
Tutsplus.com tutorials

 Example code for this tutorial on gitHub:
https://github.com/tutsplus/Android-ActivityRecognition

 Google Activity Recognition can:
 Recognize user’s current activity (Running, walking, in a vehicle or still)

 Project Setup:
 Create Android Studio project with blank Activity (minimum SDK 14)

 In build.gradle file, define latest Google Play services (now 11.8) as
dependency

Now currently Version 11.8.0

Activity Recognition Using AR API
Ref: How to Recognize User Activity with Activity Recognition by Paul
Trebilcox-Ruiz on Tutsplus.com tutorials

 Create new class ActivityRecognizedService which extends IntentService

 IntentService: type of service, asynchronously handles work off main thread

 Throughout user’s day, Activity Recognition API sends user’s activity to this
IntentService in the background

 Need to program this Intent to handle incoming user activity

Called by Android OS

to deliver

User’s activity

Activity Recognition Using AR API
Ref: How to Recognize User Activity with Activity Recognition by Paul
Trebilcox-Ruiz on Tutsplus.com tutorials

 Modify AndroidManifest.xml to
 Declare ActivityRecognizedService

 Add com.google.android.gms.permission.ACTIVITY_RECOGNITION permission

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.tutsplus.activityrecognition">

<uses-permission android:name="com.google.android.gms.permission.ACTIVITY_RECOGNITION" />

<application

android:icon="@mipmap/ic_launcher"

android:label="@string/app_name"

android:theme="@style/AppTheme">

<activity android:name=".MainActivity">

<intent-filter>

<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>

</activity>

<service android:name=".ActivityRecognizedService" />

</application>

</manifest>

http://schemas.android.com/apk/res/android

Requesting Activity Recognition

 In MainActivity.java, To connect to Google Play Services:
 Provide GoogleApiClient variable type + implement callbacks

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

public class MainActivity extends AppCompatActivity implements GoogleApiClient.ConnectionCallbacks,

GoogleApiClient.OnConnectionFailedListener {

public GoogleApiClient mApiClient;

@Override

protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.activity_main);

}

@Override

public void onConnected(@Nullable Bundle bundle) {

}

@Override

public void onConnectionSuspended(int i) {

}

@Override

public void onConnectionFailed(@NonNull ConnectionResult connectionResult) {

}

}

Handle to Google Activity

Recognition client

Called if Google Play connection fails

Called if sensor (accelerometer)

connection fails

Normal AR call if everything

working well

Requesting Activity Recognition
 In onCreate, initialize client and connect to Google Play Services

Request ActivityRecognition.API

Associate listeners with

our instance of

GoogleApiClient

Handling Activity Recognition
 Simply log each detected activity and display how confident Google

Play services is that user is performing this activity

private void handleDetectedActivities(List<DetectedActivity> probableActivities) {

for(DetectedActivity activity : probableActivities) {

switch(activity.getType()) {

case DetectedActivity.IN_VEHICLE: {

Log.e("ActivityRecogition", "In Vehicle: " + activity.getConfidence());

break;

}

case DetectedActivity.ON_BICYCLE: {

Log.e("ActivityRecogition", "On Bicycle: " + activity.getConfidence());

break;

}

case DetectedActivity.ON_FOOT: {

Log.e("ActivityRecogition", "On Foot: " + activity.getConfidence());

break;

}

case DetectedActivity.RUNNING: {

Log.e("ActivityRecogition", "Running: " + activity.getConfidence());

break;

}

case DetectedActivity.STILL: {

Log.e("ActivityRecogition", "Still: " + activity.getConfidence());

break;

}

case DetectedActivity.TILTING: {

Log.e("ActivityRecogition", "Tilting: " + activity.getConfidence());

break;

}

Sample output

Switch statement on

activity type

Handling Activity Recognition

 If confidence is > 75, activity detection is probably accurate

 If user is walking, ask “Are you walking?”

case DetectedActivity.WALKING: {

Log.e("ActivityRecogition", "Walking: " + activity.getConfidence());

if(activity.getConfidence() >= 75) {

NotificationCompat.Builder builder = new NotificationCompat.Builder(this);

builder.setContentText("Are you walking?");

builder.setSmallIcon(R.mipmap.ic_launcher);

builder.setContentTitle(getString(R.string.app_name));

NotificationManagerCompat.from(this).notify(0, builder.build());

}

break;

}

case DetectedActivity.UNKNOWN: {

Log.e("ActivityRecogition", "Unknown: " + activity.getConfidence());

break;

}

}

}

}

 Sample displayed on development console

 Full code at: https://github.com/tutsplus/Android-ActivityRecognition

Sample Output of Program

Android Awareness API

Awareness API
https://developers.google.com/awareness/overview

 Single Android API for context awareness released in 2016

 Combines some APIs already covered (Place, Activity, Location)

Awareness API

 Snapshot API:
 Return cached values (Nearby Places, weather, Activity, etc)

 System caches values

 Optimized for battery and power consumption

 Fences API:
 Used to set conditions to trigger events

 E.g. if(user enters a geoFence & Activity = running) notify my app

 Good tutorials for Awareness API:
 Google Play Services: Awareness API by Paul Trebilcox-Ruiz

https://code.tutsplus.com/tutorials/google-play-services-awareness-api--cms-25858

 Exploring the Awareness API by Joe Birch
https://medium.com/exploring-android/exploring-the-new-google-awareness-api-bf45f8060bba

https://code.tutsplus.com/tutorials/google-play-services-awareness-api--cms-25858
https://medium.com/exploring-android/exploring-the-new-google-awareness-api-bf45f8060bba

References

 Android Sensors Overview, http://developer.android.com/

guide/topics/sensors/sensors_overview.html

 Busy Coder’s guide to Android version 6.3

 CS 65/165 slides, Dartmouth College, Spring 2014

 CS 371M slides, U of Texas Austin, Spring 2014

