
CS 4518 Mobile and Ubiquitous
Computing

Lecture 9: Other Android Mobile & Ubicomp
Components, Project Proposal, Machine

Learning

Emmanuel Agu

What other Android APIs may be
useful for Mobile/ubicomp?

Speaking to Android
http://developer.android.com/reference/android/speech/SpeechRecognizer.html
https://developers.google.com/voice-actions/

 Speech recognition:

 Accept inputs as speech (instead of typing) e.g. dragon dictate app?

 Note: Requires internet access

 Two forms
1. Speech-to-text

 Convert user’s speech to text. E.g. display voicemails in text

2. Voice Actions: Voice commands to smartphone (e.g. search for, order pizza)

Speech

to text

Gestures
https://developer.android.com/training/gestures/index.html
http://www.computerworld.com/article/2469024/web-apps/android-gestures--3-cool-ways-to-control-your-
phone.html

 Gesture: Hand-drawn shape on the screen

 Example uses:
 Search your phone, contacts, etc by handwriting onto screen

 Speed dial by handwriting first letters of contact’s name

 Multi-touch, pinching

More MediaPlayer & RenderScript
http://developer.android.com/guide/topics/renderscript/compute.html

 MediaRecorder is used to record audio

 Manipulate raw audio from microphone/audio hardware, PCM buffers

 E.g. if you want to do audio signal processing, speaker recognition, etc

 Example: process user’s speech, detect emotion, nervousness?

 Can playback recorded audio using MediaPlayer

 RenderScript
 High level language for GPGPU

 Use Phone’s Graphics Processing Unit (GPU) for computational tasks

 Very few lines of code = run GPU code

 Useful for heavy duty tasks. E.g. image, video processing

Wireless Communication
http://developer.android.com/guide/topics/connectivity/bluetooth.html
http://developer.android.com/reference/android/net/wifi/package-summary.html

 Bluetooth
 Discover, connect to nearby bluetooth devices

 Communicating over Bluetooth

 Exchange data with other devices

 WiFi
 Scan for WiFi hotspots

 Monitor WiFi connectivity, Signal Strength (RSSI)

 Do peer-to-peer (mobile device to mobile device) data transfers

Wireless Communication
http://developer.android.com/guide/topics/connectivity/nfc/index.html

 NFC:
 Contactless, transfer small amounts of data over short distances

 Applications: Share spotify playlists, Google wallet

 Android Pay

 Store debit, credit card on phone

 Pay by tapping terminal

Telephony and SMS
http://developer.android.com/reference/android/telephony/package-summary.html
http://developer.android.com/reference/android/telephony/SmsManager.html

 Telephony:
 Initiate phone calls from within app

 Access dialer app, etc

 SMS:
 Send/Receive SMS/MMS from app

 Handle incoming SMS/MMS in app

Dialer

SMS

Google Play Services: Nearby Connections API
https://developers.google.com/nearby/connections/overview

 Peer-to-peer networking API, allows devices communicate over a LAN

 Allows one device to serve as host, advertise

 Other devices can discover host, connect, disconnect

 Use case: Multiplayer gaming, shared virtual whiteboard

 Good tutorial by Paul Trebilcox-Ruiz
https://code.tutsplus.com/tutorials/google-play-services-using-the-nearby-connections-api--cms-
24534?_ga=2.245472388.1231785259.1517367257-742912955.1516999489

https://code.tutsplus.com/tutorials/google-play-services-using-the-nearby-connections-api--cms-24534?_ga=2.245472388.1231785259.1517367257-742912955.1516999489
https://code.tutsplus.com/tutorials/google-play-services-using-the-nearby-connections-api--cms-24534?_ga=2.245472388.1231785259.1517367257-742912955.1516999489

Google Android Samples

 Android Studio comes with many sample programs

 Just need to import them

Google Android Samples

 Can click on any sample, read overview

 Source code available on github

Other 3rd Party Stuff
http://web.cs.wpi.edu/~emmanuel/courses/ubicomp_projects_links.html
https://developer.qualcomm.com/software/trepn-power-profiler

 MPAndroid: Add charts to your app

 Trepn: Profile power usage and utilization of your app (CPU, GPU, WiFi, etc)
 By Qualcomm

Other 3rd Party Stuff
http://web.cs.wpi.edu/~emmanuel/courses/ubicomp_projects_links.html

 Programmable Web APIs: 3rd party web content (e.g RESTful APIs) you
can pull into your app with few lines of code
 Weather: Weather channel, yahoo weather

 Shared interests: Pinterest

 Events: Evently, Eventful, Events.com

 Photos: flickr, Tumblr

 Videos: Youtube

 Traffic info: Mapquest traffic, Yahoo traffic

 E.g. National Geographic: picture of the day

Final Project Proposal

Final Project Proposal

 While finishing up project 3, also brainstorm on final project

 Mon Feb 12, all groups 5-min pitch mobile/ubicomp app, solves
WPI problem or Machine learning

 Proposals should include:

1. Problem you intend to work on

 Solve WPI/societal problem (e.g. walking safe at night)

 Encouraged to use mobile/ubicomp components. See difficulty table

 If games, must gamify solution to real world problem

2. Why this problem is important

 E.g. 37% of WPI students feel unsafe walking home

3. Related Work: What prior solutions have been proposed for this
problem (apps but also academic papers)

Final Project Proposal

4. Summary of envisioned mobile app (?) solution

 E.g. Mobile app automatically texts users friends when they get home at night

5. Implementation plan:

 Mobile/ubiquitous computing components (high level) to be used

 Project Timeline

6. Evaluation plan

 User studies, performance analysis, etc

 Can bounce ideas of me (email, or in person)

 Can change idea any time

Rubric: Grading Considerations

 Problem (10/100)
 How much is the problem a real problem (e.g. not contrived)

 Is this really a good problem that is a good fit to solve with
mobile/ubiquitous computing? (e.g. are there better approaches?)

 How useful would it be if this problem is solved?

 What is the potential impact on the community (e.g. WPI students) (e.g.
how much money? Time? Productivity.. Would be saved?)

 What is the evidence of the importance? (E.g. quote a statistic)

 Related Work (10/100)
 What else as been done to solve this problem previously

 Proposed Solution (10/100)
 How good/clever/interesting is the solution?

 How sophisticated and how many are the mobile/ubiquitous computing

components (high level) proposed? (e.g. location, geofencing, activity

recognition, face recognition, machine learning, etc)

Rubric: Grading Considerations

 Implementation Plan + Timeline (10/100)
 Clear plans to realize your design/methodology

 Android modules/3rd party software used

 Software architecture,

 Preliminary screenshots (or sketches of UI), or study design + timeline

 Evaluation Plan (10/100)
 How will you evaluate your project.

 E.g. small user studies for apps

 Machine learning cross validation, etc

 50 more points allotted for your slides + presentation

Final Project: Proposal Vs Final Submission

Final Project Proposal Vs Final Submission

 Introduction

 Related Work

 Approach/methodology

 Implementation

 Project timeline

 Evaluation/Results

 Discussion

 Conclusion

 Future Work

Proposal

Final Talk Slides

Final Paper

Note: No timeline

In final paper

The Rest of the Class

The Rest of this class

 Part 1: Course and Android Introduction

 Introduce mobile computing, ubiquitous Computing, Android,

 Basics of Android programming, UI, Android Lifecycle

 Part 2: Mobile and ubicomp Android programming

 mobile Android components (location, Google Places, maps, geofencing)

 Ubicomp Android components (camera, face detection, activity
recognition, etc)

 Part 3: Mobile Computing/Ubicomp Research

 Machine learning (classification) in ubicomp

 Ubicomp research (smartphone sensing examples, human mood
detection, etc) using machine learning

 Mobile computing research (app usage studies, energy consumption, etc)

Smartphone Sensing

Smartphone Sensors

 Typical smartphone sensors today
 accelerometer, compass, GPS, microphone, camera, proximity

 Use machine learning to classify sensor data

Future sensors?

• Heart rate monitor,

• Activity sensor,

• Pollution sensor,

• etc

Mobile CrowdSensing

 Mobile CrowdSensing: Sense collectively

 Personal sensing: phenomena pertain to individual
 E.g: activity detection and logging for health monitoring

 Group: friends, co-workers, neighborhood
 E.g. GarbageWatch recycling reports, neighborhood surveillance

Mobile CrowdSensing

 Community sensing (mobile crowdsensing):
 Large-scale phenomena monitoring

 Many people contribute their individual readings

 Examples: Traffic congestion, air pollution, spread of disease,
migration pattern of birds, city noise maps

Mobile Crowd Sensing Types

 Many people cooperate, share sensed values

 2 types:
1. Participatory Sensing: User enters sensed values (active involvement)

 E.g. Comparative shopping: Compare price of toothpaste at CVS vs Walmart

2. Opportunistic Sensing: Mobile device automatically senses values
(passive involvement)

 E.g. Waze crowdsourced traffic

Sense What?

 Environmental: pollution, water levels in a creek

 Transportation: traffic conditions, road conditions, available parking

 City infrastructure: malfunctioning hydrants and traffic signs

 Social: photoblogging, share bike route quality, petrol price watch

 Health and well-being:

 Share exercise data (amount, frequency, schedule),

 share eating habits and pictures of food

Smartphone Sensing Examples

Personal Sensing

 Personal monitoring

 Focusing on user's daily life, physical activity (Khan et al.)

 Basically like Fitbit on your phone

Other Examples of
Personal Participatory Sensing

 AndWellness
 “Personal data collection system”

 Active user-triggered experiences and surveys

 Passive recording using sensors

 UbiFit Garden
 Uses smartphone sensors , real-time statistical modeling, and a personal, mobile

display to encourage regular physical activity

Personal Opportunistic Sensing

 PerFalld

 How It Works

 Detects if someone falls using sensor

 Starts a timer if it detects that
someone fell

 If individual does not stop
timer before it ends,
emergency contacts are
called

Public Sensing

 Data is shared with everyone for public good

 Traffic

 Environmental

 Noise levels

 Air pollution

Public Participatory Sensing

 LiveCompare

 User-created database of UPCs and prices

 GPS and cell tower info used to find nearby stores

 PetrolWatch

 Turns phone into fully automated dash-cam

 Uses GPS to know when gas station is near

Public Participatory Sensing

 Pothole Monitor

 Combines GPS and accelerometer

 Party Thermometer

 Asks you questions about parties

 Detects parties through GPS and microphone

Smartphone Sensing vs Dedicated
Sensors

VS

Sensing with Smartphones
vs Dedicated Sensors

 More resources: Smartphones have much more processing and
communication power

 Easy deployment: Millions of smartphones already owned by people

 Instead of installing sensors in road, we detect traffic congestion using
smartphones carried by drivers

 Time-varying data: population of mobile devices, type of sensor data,
accuracy changes often due to user mobility and differences between
smartphones

Sensing with Smartphones
vs Dedicated Sensors

• Reuse of few general-purpose sensors: While sensor networks use
dedicated sensors, smartphones reuse relatively few sensors for wide-
range of applications

– E.g. Accelerometers used in transportation mode identification, pothole
detection, human activity pattern recognition, etc

• Human involvement: humans who carry smartphones can be involved in
data collection (e.g. taking pictures)

– Human in the loop can collect complex data

– Incentives must be given to humans

Smartphone Sensing Architecture

Smartphone Sensing Architecture
 Paradigm proposed by Lane et al

 Sense: Phones collect sensor data

 Learn: Information is extracted from sensor
data by applying machine learning and data
mining techniques

 Inform, share and persuasion: inform user
of results, share with group/community or
persuade them to change their behavior

 Inform: Notify users of accidents (Waze)

 Share: Notify friends of fitness goals
(MyFitnessPal)

 Persuasion: avoid speed traps (Waze)

References

1. A Survey of Mobile Phone Sensing. Nicholas D. Lane, Emiliano Miluzzo,
Hong Lu, Daniel Peebles, Tanzeem Choudhury, Andrew T. Campbell, In
IEEE Communications Magazine, September 2010

2. Mobile Phone Sensing Systems: A Survey, Khan, W.; Xiang, Y.; Aalsalem,
M.; Arshad, Q.; , Communications Surveys & Tutorials, IEEE , vol.PP,
no.99, pp.1-26

Intuitive Introduction to Machine Learning
for Ubiquitous Computing

My Goals in this Section

 If you know machine learning
 Set off light bulb

 Projects involving ML?

 If you don’t know machine learning
 Get general idea, how it’s used

 Knowledge will also make research papers easier to
read/understand

Recall: Activity Recognition

 Want app to detect when user is performing any of the
following 6 activities
 Walking,

 Jogging,

 Ascending stairs,

 Descending stairs,

 Sitting,

 Standing

 I will use Activity Recognition as concrete example

Recall: Activity Recognition Overview

Machine

Learning

Classifier

Walking

Running

Climbing Stairs

Gather Accelerometer data

Classify

Accelerometer

data

Recall: Example Accelerometer Data for Activities

Different user activities generate different accelerometer patterns

Recall: Example Accelerometer Data for Activities

Different user activities generate different accelerometer patterns

Activity Recognition (AR) App: How it works

 As user performs an activity, AR app on user’s smartphone
1. Gathers accelerometer data

2. Uses machine learning classifier to determine what activity (running, jumping, etc)
accelerometer pattern corresponds to

 Classifier: Machine learning algorithm that guesses what activity class
accelerometer sample corresponds to

Machine Learning

Classifier

Activity Recognition

App

Gather Accelerometer

Data from Smartphone

Walking Running In Vehicle

msensor = (mSensorManager)

getSystemService(Context.SENSOR_SERVICE)

….

Public void onSensorChanged(SensorEvent event){

….

}

Next: Machine learning

Classification

Classification for Ubiquitous Computing

Classification

 Classification is type of machine learning used a lot in Ubicomp

 Classification? determine which class a sample belongs to. Examples:

Voice

Sample

Stressed

Not Stressed

Walking

Jogging

Sitting still

Ascending

Stairs

Stress Detector App

Accelerometer

Sample

Machine Learning

Classifier

Machine Learning

Classifier
Machine Learning

Classifier

Activity Recognition App

Classes

Classes

Classification

Fear

Happy

Neutral

Sadness

Image showing

Facial Expression

Machine Learning

Classifier
Machine Learning

Classifier

Facial Interpretation

App

Disgust

Anger

Surprise

Classes

Classifier

 Analyzes new sample, guesses corresponding class

 Intuitively, can think of classifier as set of rules for classification. E.g.

 Example rules for classifying accelerometer signal in Activity Recognition

If ((Accelerometer peak value > 12 m/s)

and (Accelerometer average value < 6 m/s)){

Activity = “Jogging”;

}

Accelerometer

Sample

Machine Learning

Classifier
Machine Learning

Classifier

Activity Recognition App

Classes

Walking

Jogging

Sitting still

Ascending

Stairs

Training a Classifier

 Created using example-based approach (called training)

 Training a classifier: Given examples of each target class => generate rules to
categorize new samples

 E.g: Analyze example data from 30 subjects of accelerometer signal for each
activity type (walking, jogging, sitting, ascending stairs) => generate rules
(classifier) to classify future activities

Train Machine

Learning

Classifier

Activity Recognition

Classifier

Examples of

user walking

Examples of user

ascending stairs

Examples of

user jogging

Examples of

user sitting

Training a Classifier: Steps

Steps for Training a Classifier

1. Gather data samples + label them

2. Import accelerometer samples into classification library (e.g.
Weka, MATLAB)

3. Pre-processing (segmentation, smoothing, etc)

4. Extract features

5. Train classifier

6. Export classification model as JAR file

7. Import into Android app

Step 1: Gather Sample data + Label them

 Need many samples of accelerometer data corresponding to each
activity type (jogging, walking, sitting, ascending stairs, etc)

Train Machine

Learning

Classifier

Activity Recognition

Classification model

Samples of

user walking

Samples of user

ascending stairs

Samples of

user jogging

Samples of

user sitting

Samples of

user standing

Need 30+

samples of

each activity

type

Step 1: Gather Sample data + Label them

 Run a study to gather sample
accelerometer data for each activity class
 Recruit 30+ subjects

 Run program that gathers accelerometer
sensor data on subject’s phone

 Make subjects perform each activity (walking,
jogging, sitting, etc)

 Collect accelerometer data while they perform
each activity (walking, jogging, sitting, etc)

 Label data. i.e. tag each accelerometer sample
with the corresponding activity

 Now have 30 examples of each activity

30+ Samples of

user ascending

stairs

30+

Samples of

user sitting

Step 1: Gather Sample data + Label them
Program to Gather Accelerometer Data

 Option 1: Can write sensor program app that gathers
accelerometer data while user is doing each of 6 activities (1
at a time)

msensor = (mSensorManager)

getSystemService(Context.SENSOR_SERVICE)

….

Public void onSensorChanged(SensorEvent event){

….

}

Step 1: Gather Sample data + Label them
Program to Gather Accelerometer Data

 Option 2: Use 3rd party app to gather accelerometer
 2 popular ones: Funf and AndroSensor

 Just download app,

 Select sensors to log

(e.g. accelerometer)

 Continuously gathers sensor

data in background

 FUNF app from MIT
 Accelerometer readings

 Phone calls

 SMS messages, etc

 AndroSensor Funf AndroSensor

Step 2: Import accelerometer samples into
classification library (e.g. Weka, MATLAB)

 Import accelerometer data (labelled with corresponding activity)
into Weka, MATLAB (or other Machine learning Framework)

Weka Classifiers

Classifier is trained

offline

Walking

Ascending

stairs

ACCELEROMETER

DATA

Sitting

Jogging

LABELS

Step 3: Pre-processing (segmentation, smoothing, etc)
Segment Data (Windows)

 Pre-processing data (in Weka, or MATLAB) may include
segmentation, smoothing, etc
 Smoothing: Replace batches of values with their moving average

 Reduce choppiness

 Segment: Divide 60 seconds of raw time-series data divided into
chunks(e.g. 5 seconds)

 Note: 5 seconds of accelerometer data could be 100s of readings

Segments

Smoothing

Step 4: Compute (Extract) Features

 For each 5-second segment (batch of accelerometer values)
compute features (in Weka, MATLAB, etc)

 Features: Functions computed on accelerometer data, captures
important accelerometer characteristics

 Examples: min-max of values, largest magnitude within segment,
standard deviation

Step 4: Compute (Extract) Features

 Important: Ideally, values of features calculated should be different
for, distinguish each activity type

 E.g: Min-max range feature
Large min-max

for jogging

Small min-max

for sitting

Step 4: Compute (Extract) Features

Calculate

many

different

features

Step 5: Train Classifier
MATLAB Classification Learner App
 Import accelerometer data into MATLAB

 Can do feature extraction in MATLAB

 Select Classifier types to compare

Step 5: Train classifier

 Features are just numbers

 Different values for different activities

 Training classifier: figures out feature values corresponding to each activity

 Weka, MATLAB already programmed with different classification algorithms
(SVM, Naïve Bayes, Random Forest, J48, logistic regression, SMO, etc)

 Try different ones, compare accuracy

 Points in diagram are feature values in multi-dimensional space. SVM example

Activity 1

(e.g. walking)

Activity 2

(e.g. sitting)

Classifier

Feature 1

Feature 2

Step 5: Train classifier

 Example: Decision Tree Classifier

 Feature values compared against learned thresholds at each
node

Step 5: Train classifier
Compare Accuracy of Classifier Algorithms

 Weka, MATLAB also reports accuracy of each classifier type

Compare, pick most accurate

classification algorithm

Step 6: Export Classification model as JAR file
Step 7: Import into Android app

 Export classification model (most accurate classifier type + data threshold
values) as Java JAR file

 Import JAR file into Android app

 In app write Android code to
 Gather accelerometer data, segment, extract feature, classify using classifier in JAR file

 Classifies new accelerometer patterns while user is performing activity =>
Guess (infer) what activity

Classifier in

Android app

Activity

(e.g. Jogging)

New accelerometer

Sample in real time

Context Sensing

Recall: Ubicomp Senses User’s Context

 Context?
 Human: motion, mood, identity, gesture

 Environment: temperature, sound, humidity, location

 Computing Resources: Hard disk space, memory, bandwidth

 Ubicomp example:

 Assistant senses: Temperature outside is 10F (environment sensing) +
Human plans to go work (schedule)

 Ubicomp assistant advises: Dress warm!

 Sensed environment + Human + Computer resources = Context

 Context-Aware applications adapt their behavior to context

Context Sensing

 Activity Recognition uses data from only accelerometer (1 sensor)

 Can combine multiple sensors, use machine learning to learn user context
that occur to various outcomes (e.g. user’s emotion)

 More later
Sensor 1

Sensor 2

Sensor 3

Sensor N

Machine Learning

Classifier
Machine Learning

Classifier
User

Context

Voice data

Accelerometer

Call/SMS pattern

Temperature

Machine Learning

Classifier
Machine Learning

Classifier
User

Context

Location

Deep Learning

Deep Learning

 Network of nodes, connectivity weights learned from data

 Learns best weights to classify inputs (x) into outputs y

 Can think about it as curve fitting

 Generally more accurate if more data is available

 Requires lots of computational power to train

Convolutional Neural Networks (CNNs)

 Different types of neural networks good for different things

 Convolutional Neural Networks good for classifying images

 E.g. Is there a cat in an input picture?

Recurrent Neural Networks (RNNs)

 Good at classifying sequential data

 E.g. Speech translation

 E.g. translate german sentence to English

Programming/Mobile Support for Neural Networks
https://developer.android.com/ndk/guides/neuralnetworks/index.html

 Many python libraries

 Enable training neural networks in a few lines of code

 Keras

 PyTorch

 ScikitLearn

 Training neural networks on Smartphone still tough

 New in Android 8.1: Android Neural Networks API allows inference (test)
of pre-trained neural networks on smartphone

 Keras also has some mobile support

References

 Google Mobile Vision API, https://developers.google.com/vision/

 Camera “Taking Photos Simply” Tutorials,
http://developer.android.com/training/camera/photobasics.html

 Busy Coder’s guide to Android version 6.3

 CS 65/165 slides, Dartmouth College, Spring 2014

 CS 371M slides, U of Texas Austin, Spring 2014

