GL Shading Language (GLSL)

GLSL: high level C-like language
Main program (e.g. examplel.cpp) program written in C/C++
Vertex and Fragment shaders written in GLSL

From OpenGL 3.1, application must use shaders

What does keyword out mean?

\\\\Nlconst vecd4 red = vec4(1.0, 0.0, 0.0, 1.0);

out vec3 color_out; < Example code
of vertex shader

void main(void){
gl Position = vPosition;
color_out =\red;

}

\ gl_Position not declared
Built-in types (already declared, just use)

Passing values

e Variable declared out in vertex shader can be declared asin in

fragment shader and used

e Why? To pass result of vertex shader calculation to fragment

shader

const vec4 red = vec4(1.0, 0.0, 0.0, 1.0);

ut |vec3 color_out;

void main(void){
gl Position = vPosition;

Vertex

color_out = red; shader

i vec3 color_out; vV Fragment
shader

void main(void){
// can use color_out here.
+

CY X))
(Y XK)
XX
(Y
o
In Vertex out
From main | Shader
program To fragment
shader
N | Fragment | ©U!
Vertex To
shader framebuffer

Data Types

e Ctypes: int, float, bool

e GLSL types:
o Tloat vec2: e.g. (X,Yy) // vector of 2 floats
e Tloat vec3: e.g. (x,y,z) or (R,G,B) // vector of 3 floats
o Tloat vec4: e.g. (X,Y,z,w) // vector of 4 floats

Const float vec4|red = vec4(1.0, 0.0, 0.0, 1.0);
out float |vec3| color_out;

void main(void){
gl Position = vPosition;

color_out = red; Vertex
1 shader

\ C++ style constructors

e Also:
e int (ivec2, ivec3, ivec4) and
e boolean (bvec2, bvec3,bvec4)

Data Types

e Matrices: mat2, mat3, matd
Stored by columns
Standard referencing m[row][column]

e Matrices and vectors are basic types
can be passed in and out from GLSL functions
o E.g
mat3 func(mat3 a)
e No pointers in GLSL
e Can use C structs that are copied back from functions

Qualifiers

e GLSL has many C/C++ qualifiers such as const
e Supports additional ones

e Variables can change

Primitive
Once per vertex
Once per fragment

Once per primitive (e.g. triangle) \
At any time in the application Vertex

e Example: variable vPosition may be assigned once per vertex

Z.

}

const vec4 red = vec4(1.0, 0.0, O.
out vec3 color_out;

void main(void){
gl Position = vPosition;
color_out = red;

; 1.0);

Operators and Functions

e Standard C functions
Trigonometric: cos, sin, tan, etc
Arithmetic: log, min, max, abs, etc
Normalize, reflect, length

e Overloading of vector and matrix types

mat4 a;

vec4d b, c, d;

C = b*a; // a column vector stored as a 1d array
d = a*b; // a row vector stored as a 1d array

Swizzling and Selection

e Can refer to array elements by element using [] or
selection (.) operator with

X, Y,z
r, 8|b,

SI tl |pl

vecd

al[2]

w
d

q
a,

, a.b, a.z, a.p are the same

e Swizzling operator lets us manipulate components

a.yz =

vec2(1.0, 2.0);

Computer Graphics (CS 4731)
Lecture 7: Building 3D Models

Prof Emmanuel Agu

Computer Science Dept.
Worcester Polytechnic Institute (WPI)

3D Applications

e 2D points: (x,y) coordinates
e 3D points: have (x,y,z) coordinates

Setting up 3D Applications: Main Steps

e Programming 3D similar to 2D
Load representation of 3D object into data structure

Each vertex has (X,y,z) coordinates.
Store as vec3 NOT vec?2

Draw 3D object

Set up Hidden surface removal: Correctly determine
order in which primitives (triangles, faces) are
rendered (e.g Blocked faces NOT drawn)

3D Coordinate Systems :

e Vertex (x,y,z) positions specified on coordinate system
e OpenGL uses right hand coordinate system

+z

+
N
X

— Left hand coordinate system

*Not used in OpenGL
Right hand coordinate system

Tip: sweep fingers x-y: thumb is z

Generating 3D Models: GLUT Models |

Make GLUT 3D calls in OpenGL program to generate vertices
describing different shapes (Restrictive?)

Two types of GLUT models:
e Wireframe Models
e Solid Models

Solid models

Wireframe models

[FrecatuT shapes o=]

o0
oo
' TIX
52
3D Modeling: GLUT Models :
e Basic Shapes
e Cone: glutWireCone(), glutSolidCone()
e Sphere: glutWireSphere(), glutSolidSphere()
e Cube: glutWireCube(), glutSolidCube()
e More advanced shapes: Sphere Cone Torus

(] NGWE“ Teapot: (SymbO“C) [FTreciiT shep D

e Dodecahedron, Torus

Newell Teapot

3D Modeling: GLUT Models

e Glut functions under the hood

e generate sequence of points that define a shape
e Generated vertices and faces passed to OpenGL for rendering

e Example: glutWireCone generates sequence of vertices,
and faces defining cone and connectivity

vertices, and faces
defining cone

: OpenGL program
glutWireCone > (renders cone)

Polygonal Meshes °

e Modeling with GLUT shapes (cube, sphere, etc) too restrictive
e Difficult to approach realism. E.g. model a horse
e Preferred way is using polygonal meshes:
e Collection of polygons, or faces, that form “skin” of object
e More flexible, represents complex surfaces better
e Examples:
Human face
Animal structures
Furniture, etc

. \ W%

N\
NN
N

Each face of mesh
Is a polygon

Polygonal Mesh Example

Smoothed
Out with _~
Shading
(later)

#1= Mesh - Copie de nefertiti_wrl

File Edt OpenGL Mezh View ‘window Help

Ol=d - |%|e]| s/2]

W nefertiti wil

=10] x|

F'Eupie de nefertiti. wrl

fi

ok
Y]
RN
i
s

y

S

R
o
i

Ay

i

o

et
L

S
e
S
X
"h

ol
= e
v
LTAAN
A
ALY

e

el

S
-y
FAYAY)

A

A’

| 7
v

AN vy

NN e
e L T

| A7

et '.ﬁ‘{i’
i‘#ﬂ"

Feady

\
Mesh
(wireframe)

Polygonal Meshes °

e Meshes now standard in graphics

e OpenGL Good at drawing polygons, triangles

e Mesh = sequence of polygons forming thin skin around object
e Simple meshes exact. (e.g barn)

e Complex meshes approximate (e.g. human face)

“a) BOX

Different Resolutions of Same Mesh e

Original: 424,000 60,000 triangles 1000 triangles
triangles (14%). (0.2%)

(courtesy of Michael Garland and Data courtesy of Iris Development.)

Representing a Mesh

e Consider a mesh

Vo

e There are 8 vertices and 12 edges

e 5interior polygons

e 6 interior (shared) edges (shown in orange)
e Each vertex has a location v; = (X; V; ;)

Simple Representation

e Define each polygon by (x,y,z) locations of its vertices
e OpenGL code

vertex|[i] = vec3(x1, vyl, zl);
vertex[i+1] = vec3(x6, y6, z6);
vertex[i+2] vec3(X7, y7, z7);
1+=3;

Issues with Simple Representation :

e Declaring face f1

vertex[1i] = vec3(x1, vyi1, zl1);
vertex[i+1] = vec3(X7, y7, z7):
vertex[i+2] = vec3(x8, y8, z8);
vertex[i1+3] = vec3(x6, y6, z6);
e Declaring face 2
vertex|[i] = vec3(x1l, yi, zl);
vertex[i+1] = vec3(x2, y2, z2);
vertex[i+2] = vec3(x7, y7, z7);

e |nefficient and unstructured
o Repeats: vertices vl and v7 repeated while declaring f1 and f2
e Shared vertices shared declared multiple times
o Delete vertex? Move vertex? Search for all occurences of vertex

Geometry vs Topology

oQ
<

e Better data structures separate geometry from topolo
e Geometry: (x,y,z) locations of the vertices
e Topology: How vertices and edges are connected

e Example:
A polygon is ordered list of vertices
An edge connects successive pairs of vertices

e Topology holds even if geometry changes (vertex movs)
Ve o Vs

Example: even if we move (x,y,z) location of v1,

v1still connected tov6, v7and vz~ ——— v, &
/
/

v L
10 v,

Polygon Traversal Convention

e Use the right-hand rule = counter-clockwise encirclement
of outward-pointing normal

e Focus on direction of traversal
e Orders {vy, V,, V3} and {V3, V,, V,} are same (ccw)
e Order {v;, V,, V5} is different (clockwise)

e What is outward-pointing normal?

Normal Vector

e Normal vector: Direction each polygon is facing
e Each mesh polygon has a normal vector
e Normal vector used in shading

f &
—x

0

—(

T
. :u lml 1] \(,”um
5 O S1dcwe
{-_/_j// c 1
normal vector
to front wall

Vertex Lists

e Vertex list: (x,y,z) of vertices (its geometry) are put in array

e Use pointers from vertices into vertex list

e Polygon list: vertices connected to each polygon (face)

Topology example: Polygon P1 of mesh is
connected to vertices (v1,v7,v6)

N

Pl |—— V-

P2 Vg

P3|

P4 |- > o Vg Lo .

P5 |~ > V5
v | .

v

X1Y14;
X2 Y2 25
X3 Y373
X4 Ya24
X5 Y5 Zs,
X6 Y6 Z6
X7 Y7 279

Xg Yg Zg

Geometry example:
Vertex v7 coordinates

are (x7,y7,27).
Note: If vZ moves,
changed once in vertex
list

Vertex List Issue: Shared Edges

e Vertex lists draw filled polygons correctly

e |f each polygon is drawn by its edges, shared edges are
drawn twice

e Alternatively: Can store mesh by edge list

Edge List

Simply draw each edges once
E.g el connects vl and v6

X1¥Y1Z4
X2 Y2 Z;
X3Y3 23
X4 Ya 24

X6 Y6 Zs
X7Y7Z,
Xg Yg Zg

X5 Y5 Zs,

Note polygons are
not represented

Modeling a Cube

e In 3D, declare vertices as (x,y,z) using point3 v[3]
e Define global arrays for vertices and colors

X

y y
typedef vec3 point3; \4 \
point3 vertices[] = {point3(-1.0,-1.0,-

point3(1.0,-1.0,-1.0), point3(1.0,1.0,-1.
point3(-1.0,1.0,-1.0), point3(-1.0,-1.0,1
point3(1.0,-1.0,1.0), point3(1.0,1.0,1.0),
point3(-1.0,1.0,1.0)};

1.
1.
I g b
typedef vec3 color3; \l \
color3 colors|[] = {color3(0.0,0.0,0.0),
color3(1.0,0.0,0.0), color3(1.0,1.0,0.0),
color(0.0,1.0,0.0), color3(0.0,0.0,1.0),

color3(1.0,0.0,1.0), color3(1.0,1.0,1.0),
color3(0.0,1.0,1.0});

= o,

Drawing a triangle from list of indices

Draw a triangle from a list of indices into the array
vertices and assign a color to each index

void triangle(int a, int b, Int c, int d)

{
vcolors[i] = colors[d]; a
position[i] = vertices|[a];
vcolors[i1+1] = colors[d]);
position[i+1l] = vertices|[b];
vcolors[i1+2] = colors[d];
position[i+2] = vertices|c];
1+=3;

Variables a, b, c are indices into vertex array
Variable d is index into color array
Note: Same face, so all three vertices have same color

Draw cube from faces

void colorcube() 5

{

quad(O0,
quad(2,
quad(O0,

,1);
,6);

,3) 5
,9); 1

quad(1,
J7); 4

quad(4,

Normal vector

N

P OIN DWW
OGO OoONNDN

quad(O, ,4);

0

Note: vertices ordered (counterclockwise)
so that we obtain correct outward facing normals

7

References

e Angel and Shreiner, Interactive Computer Graphics,
6t edition, Chapter 3

e Hill and Kelley, Computer Graphics using OpenGL, 3"
edition

