Recall: Function Calls to Create Transform Matrices

e Previously made function calls to generate 4x4 matrices for

identity, translate, scale, rotate transforms

e Put transform matrix into CTM
e Example

CTM Matrix

1
mat4d m = ldentity();)

0
0
0

o O —» O

0

0
1
0

0

0
0
1

Arbitrary Matrices

e Can multiply by matrices from transformation
commands (Translate, Rotate, Scale) into CTM

e Can also load arbitrary 4x4 matrices into CTM

1 0 15 3
, 0O 2 0 12
Load into

CTM Matrix - 34 0 3 12
0 24 0 1

Matrix Stacks

e CTM is actually not just 1 matrix but a matrix STACK

Multiple matrices in stack, “current” matrix at top

Can save transformation matrices for use later (push, pop)
e E.g: Traversing hierarchical data structures (Ch. 8)
e Pre 3.1 OpenGL also maintained matrix stacks
e Right now just implement 1-level CTM
e Matrix stack later for hierarchical transforms

Reading Back State

e Can also access OpenGL variables (and other parts of
the state) by guery functions

glGetIntegerv
glGetFloatv
glGetBooleanv
glGetDoublev
gllsEnabled

e Example: to find out maximum number of texture units

glGetintegerv(GL_MAX TEXTURE_UNITS, &MaxTextureUnits);

Using Transformations

e Example: use idle function to rotate a cube and mouse
function to change direction of rotation

e Start with program that draws cube as before
Centered at origin
Sides aligned with axes

Recall: main.c

void main(int argc, char **argv)

{

glutinit(&argc, argv);
glutinitDisplayMode(GLUT_DOUBLE | GLUT_RGB |
GLUT_DEPTH);
glutinitWindowSize(500, 500);
glutCreateWindow(''colorcube™);
glutReshapeFunc(myReshape) ;
glutDisplayFunc(display);
glutldleFunc(spinCube) ;«——
glutMouseFunc(mouse) ;
glEnable(GL_DEPTH _TEST);
glutMainLoop();

Calls spinCube continuously
Whenever OpenGL program is idle

000
000
| X)
°

Recall: Idle and Mouse callbacks

void spinCube()

{

thetaJaxis] += 2.0;
1T(thetaJaxis] > 360.0) thetaJaxis] -= 360.0;
glutPostRedisplay();

ks

void mouse(int button, iInt state, Int X, Int y)
{
1T(button==GLUT_LEFT BUTTON && state == GLUT_DOWN)
axis = 0;
1T(button==GLUT_MIDDLE_BUTTON && state == GLUT_DOWN)
axis = 1;
1T(button==GLUT_RIGHT _BUTTON && state == GLUT_DOWN)
axis = 2;

e
Display callback s
void display()
{
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
ctm = RotateX(theta]JO])*RotateY(theta[l])
*RotateZ(thetal[2]);
glUuniformMatrix4dfv(matrix_loc,1,GL_TRUE,ctm);
giDrawArrays(GL_TRTANGLES, O, N);
glutSwapBuffers();
+

e Alternatively, we can
e send rotation angle + axis to vertex shader,
e Let shader form CTM then do rotation
e |nefficient: if mesh has 10,000 vertices each one forms CTM,
redundant!!!!

Using the Model-view Matrix

Vertices Vertices
» Model-view ——» Projection -

| |
|
CTM

e In OpenGL the model-view matrix used to
Transform 3D models (translate, scale, rotate)
Position camera (using LookAt function) (next)

e The projection matrix used to define view volume and select a
camera lens (later)

e Although these matrices no longer part of OpenGL, good to
create them in our applications (as CTM)

3D? Interfaces

e Major interactive graphics problem: how to use 2D
devices (e.g. mouse) to control 3D objects

e Some alternatives
e Virtual trackball
e 3D input devices such as the spaceball

e Use areas of the screen

Distance from center controls angle, position, scale
depending on mouse button depressed

Computer Graphics 4731
Lecture 10: Rotations and Matrix
Concatenation

Prof Emmanuel Agu

Computer Science Dept.
Worcester Polytechnic Institute (WPI)

Recall: 3D Translate Example

Translation of object

e Example: If we translate a point (2,2,2) by displacement (2,4,6), new

location of point is (4,6,8)

Translate(2,4,6)

"Translated x: 2+2 =4
"Translatedy: 2+4 =6

sTranslated z: 2+ 6 =4

Translated

point

c o b~

1

o o =
o +— O
— O O
o A~ DN

Translation Matrix

o0
0000
LY XX
[
o0
O

2

2

2

1

Original point

Recall: 3D Scale Example

If we scale a point (2,4,6) by scaling factor (0.5,0.5,0.5)
Scaled point position =(1, 2, 3)

sScaled x;: 2x05=1
»Scaledy: 4x05=2
sScaledz: 6 x 0.5=3

1 05 0 0 0) (2

2 0O 05 0 0] |4

370 0 05 0|6

1 0O 0 0 1) \1
Scaled Scale Matrix for Original

point Scale(0.5, 0.5, 0.5) point

Nate Robbins Translate, Scale Rotate
Demo

World- space view

Screen-space view

World-space view SCreen-space view

Command manipulation window

Command manipulation window

glTranslatef(0.00 , 0.00 , 0.00); Glfloat pos[4] = { 1.50 , 1.00 , 1.00 ,0.00 }

glRotatef(0.0 ,0.00 ,1.00 ,0.00) gluLookAt(0.00 ,0.00 ,2.00 , <-eye
glScalef(1.00 ,1.00 , 1.00 }; 0.00 ,0.00 ,000 , <- center
glBegin(... J; 000 ,1.00 ,000); <-up

glLightfv(GL_LIGHT0, GL_POSITION, pos);

Click on the arguments and move the mouse to modify values. Click on the arguments and move the mouse to modify values.

Rotating in 3D

e Many degrees of freedom. Rotate about what axis?
e 3D rotation: about a defined axis
e Different transform matrix for:

Rotation about x-axis

Rotation about y-axis

Rotation about z-axis

Rotating in 3D

e New terminology
X-roll: rotation about x-axis
Y-roll: rotation about y-axis
Z-roll: rotation about z-axis

e Which way is +ve rotation

Look in —ve direction (into +ve arrow)

y
CCW is +ve rotation (}

) (

ﬁz >

Rotating in 3D oo

a) the barn

b) —=70° x-roll Yy

y .
A

c) 30° y-roll d) -90° z-roll Yy

E

S

Rotating in 3D

e For arotation angle, f# about an axis

e Define:
¢ =cos(A) s =sin(A)
x-roll or (RotateX) (1 0 0 0
0 c —-s O
R —
B=ly « ¢ o
00 0 1,

000
o000
:o
Rotating in 3D
(¢ 0 s 0)
y-roll (or RotateY)
O 1 0 0 Rules:
RY(IB): s 0 c 0 Write 1 in rotation row,
o column
*\Wri in the other
\ 0 00 1) rx\\ivst?cglun:n: ome
*Write c,s in rect pattern
z-roll (or RotateZ) (c —s 0 0)
s ¢ 0O
R =
B)=l0 0 1 o
0 0 0 1,

Example: Rotating in 3D

Question: Using y-roll equation, rotate P = (3,1,4) by 30 degrees:

Answer: ¢ = cos(30) = 0.866, s = sin(30) = 0.5, and

Linel: 3.c+1.0 +4s+1.0
=3x0.866 + 4x05 = 4.6

3D Rotation

e Rotate(angle, ux, uy, uz): rotate by angle § about an arbitrary
axis (a vector) passing through origin and (ux, uy, uz)

e Note: Angular position of u specified as azimuth/longitude (@)

and latitude (4)

Az /(ux, uy, uz)
u

Approach 1: 3D Rotation About
Arbitrary Axis :

e Can compose arbitrary rotation as combination of:
e X-roll (by ananglef)
e Y-roll (byananglep)
o Z-roll (byanangle §,)

M =R,(8;)R,(5,)R,(5,)

~

Read in reverse order

Approach 1: 3D Rotation using Euler | 32
Theorem

e Classic: use Euler’s theorem

e Euler’s theorem: any sequence of rotations = one
rotation about some axis

e Want to rotate 3 about arbitrary axis u through origin
e Our approach:

Use two rotations to align u and x-axis
Do x-roll through angle 3
Negate two previous rotations to de-align u and x-axis

Approach 1: 3D Rotation using Euler
Theorem

e Note: Angular position of u specified as azimuth (&)
and latitude (¢)

e First try to align u with x axis

.'Il.'._\\
8!
|
“‘ L1
a')-\-.
AT 0
B, =
2
.'/
.-'f-.!
Vi -
7 4 A\
'd O |
| o)_ H"‘*-..
3 X

Approach 1: 3D Rotation using Euler
Theorem

e Step 1: Do y-roll to line up rotation axis with x-y plane

R, (0)

Approach 1: 3D Rotation using Euler

Theorem

e Step 2: Do z-roll to line up rotation axis with x axis

?z (_¢)

R, (6)

Approach 1: 3D Rotation using Euler
Theorem :

e Remember: Our goal is to do rotation by g around u
e But axis u is now lined up with x axis. So,

e Step 3: Do x-roll by g around axis u

4 R, (AR, (4R, (6)

z/\

Approach 1: 3D Rotation using Euler
Theorem :

e Next 2 steps are to return vector u to original position
e Step 4: Do z-roll in x-y plane

R, (#)R(B)R, (=2)R, (0)

Approach 1: 3D Rotation using Euler
Theorem

e Step 5: Do y-roll to return u to original position

R,(8) =R, (-0)R, (AR, (B)R,(-#)R, (6)

Approach 2: Rotation using 33
Quaternions

e Extension of imaginary numbers from 2 to 3 dimensions
e Requires 1 real and 3 imaginary components I, J, K

0=0o+q,1+0,)+03K

e Quaternions can express rotations on sphere smoothly
and efficiently

Approach 2: Rotation using
Quaternions

e Derivation skipped! Check answer
e Solution has lots of symmetry

[c+(@-cu” (@-c)uu,+su, (I-c)u,u, +su,

(l-c)u,u, +su, c+(@-cu,” (I-c)u,u,—su,
2

(l-cuu,-su, (@-cjuu,-su, c+(1-c)u,

. 0 0 0

R(B) =

¢ = cos(p) s =sin(A3) Arbitrary axis u

Inverse Matrices

e Can compute inverse matrices by general formulas
e But some easy inverse transform observations
e Translation: T'l(dx, d, d,)=T(-d, -d, -d,)
e Scaling: S*(s,, s, s,)=S(1/s,, 1/s, 1/s,)
» Rotation: R 1(q) = R(-q)
Holds for any rotation matrix

Instancing

e During modeling, often start with simple object centered at
origin, aligned with axis, and unit size

e Can declare one copy of each shape in scene
e E.g. declare 1 mesh for soldier, 500 instances to create army
e Then apply instance transformation to its vertices to
Scale
Orient T_.__.,.TH..
Locate

References

e Angel and Shreiner, Chapter 3

e Hill and Kelley, Computer Graphics Using OpenGL, 3™
edition

