Recall: Antialiasing

e Raster displays have pixels as rectangles

e Aliasing: Discrete nature of pixels introduces
“jaggies”

“} h}

¥ 1 .
—]_ll 5 BR
[eda 4] | | i
8 nEmmE
T] il ||
\ T EEEE

Recall: Antialiasing

e Aliasing effects:
Distant objects may disappear entirely
Objects can blink on and off in animations

e Antialiasing techniques involve some form of
blurring to reduce contrast, smoothen image

e Three antialiasing techniques:
Prefiltering

Postfiltering
Supersampling

Prefiltering

e Basic idea:
compute area of polygon coverage
use proportional intensity value

e Example: if polygon covers % of the pixel

Pixel color = % polygon color + % adjacent region color

e Cons: computing polygon coverage can be time
consuming

Supersampling

e Assumes we can compute color of any location (x,y) on screen
e Sample (x,y) in fractional (e.g. }2) increments, average samples

e Example: Double sampling = increments of 2 =9 color values
averaged for each pixel

} Average 9 (X, y) values
to find pixel color

—
sl
—

Postfiltering

Supersampling weights all samples equally
Post-filtering: use unequal weighting of samples
Compute pixel value as weighted average
Samples close to pixel center given more weight

Sample weighting

1716

1716

1716

0 O

1716

1/2

1716

—

—

1716

1716

1716

Antialiasing in OpenGL

e Many alternatives
e Simplest: accumulation buffer

e Accumulation buffer: extra storage, similar to frame
buffer

e Samples are accumulated

e When all slightly perturbed samples are done, copy
results to frame buffer and draw

Antialiasing in OpenGL

e Firstinitialize:
e glutinitDisplayMode(GLUT_SINGLE |
GLUT_RGB | GLUT_ACCUM | GLUT _DEPTH);

e Zero out accumulation buffer
e giClear(GLUT_ACCUM_BUFFER_BIT);

e Add samples to accumulation buffer using
e glAccum()

Antialiasing in OpenGL

e Sample code
e jitter[] stores randomized slight displacements of camera,
e factor, f controls amount of overall sliding

glClear(GL_ACCUM_BUFFER_BIT);
for(int 1=0;1 < 8; 1++)
{
cam.slide(f*jitter[i1]-x, f*jitter[i1].y, 0);
display();

glAccum(GL_ACCUM, 1/8.0); jitter.h

1 -0.3348, 0.4353
glAccum(GL_RETURN, 1.0); 0.2864, -0.3934

Computer Graphics
CS 4731 Lecture 26
Curves

Prof Emmanuel Agu

Computer Science Dept.
Worcester Polytechnic Institute (WPI)

So Far...

e Dealt with straight lines and flat surfaces
e Real world objects include curves

e Need to develop:

Representations of curves (mathematical)
Tools to render curves

Interactive Curve Design

e Mathematical formula unsuitable for designers

e Prefer to interactively give sequence of points
(control points)

e Write procedure:
e Input: sequence of points
e Output: parametric representation of curve

Interactive Curve Design e

e 1 approach: curves pass through control points (interpolate)
e Example: Lagrangian Interpolating Polynomial
e Difficulty with this approach:

e Polynomials always have “wiggles”
e For straight lines wiggling is a problem

e Our approach: approximate control points (Bezier, B-Splines)

LSS S 4

Interpolation Approximation

De Casteljau Algorithm -

e Consider smooth curve that approximates sequence
of control points [p0,p1,....]

p(u) =1-u)p, +up, O<u<l

P
Artist provides System generates
these points / this point using math
plu)

Po

e Blending functions: u and (1 — u) are non-negative
and sum to one

De Casteljau Algorithm

e Now consider 3 points
e 2 line segments, PO to P1 and P1 to P2

p01(u) — (1—U) po + upl pll(u) — (1—U) pl + upz

Po P2

De Casteljau Algorithm
Substituting known values of Py (U) and p,;(u)
p(u) — (1_ U) Por T upll(u)
= (1-u)®|p, f+ (Ru@—u))p, u2\|o2
By, (U) by, (u) b,, (U)
Blending functions for degree 2 Bezier curve
b, (U) = (1-U)* by, (u)=2u(l-u) by, (u) =u’

Note: blending functions, non-negative, sum to 1

De Casteljau Algorithm

e Extend to 4 control points PO, P1, P2, P3

Pyglu)

Py P3

p(u) = (1-u)’ P, + (Bu(d—u)*) p,}+ (Bu” (1~ U)EJr u*

/ T

Doz (U) D5 (U) b3 (u) b, (U)
e Final result above is Bezier curve of degree 3

De Casteljau Algorithm

p(u) = (1-u)

/

D3 (U)

0,5(U) = u’

Po

+ (Bu(l—u)°

T

b13 (u)

05 (U) = (1-u)°
0, (U) =3u(l-u)?
0,,(U) =3u’(1-u)

) Py

+(3u2(1—u)E

0,5 (u)

+U

3

D35 (u)
e Blending functions are polynomial functions called

Bernstein’s polynomials

Subdividing Bezier Curves

e OpenGL renders flat objects

e To render curves, approximate with small linear
segments

e Subdivide surface to polygonal patches

e Bezier Curves can either be straightened or curved
recursively in this way

Pa Ps

Bezier Surfaces

e Bezier surfaces: interpolate in two dimensions
e This called Bilinear interpolation
e Example: 4 control points, POO, PO1, P10, P11,

2 parameters u and v

e Interpolate between
POO and P01 using u
P10 and P11 using u
POO and P10 using v
PO1 and P11 using v

p(u,Vv) = (1=V)((1~U) Poy +UPg) +V((L—U) Py +UP;,)

Problems with Bezier Curves T:

e Bezier curves elegant but to achieve smoother curve

e = more control points b3(w)

bya(u)

e = higher order polynomial bisW) by(u)

e = more calculations

{0 u 1

e Global support problem: All blending functions are
non-zero for all values of u

e All control points contribute to all parts of the curve

e Means after modelling complex surface (e.g. a ship), if
one control point is moves, recalculate everything!

B-Splines e

e B-splines designhed to address Bezier shortcomings

e B-Spline given by blending control points

e Local support: Each spline contributes in limited range
e Only non-zero splines contribute in a given range of u

) =Y B (WP

LB”{LE}
JLB;{"} : : : :
— Nmw SN
JB;{LI} I.Ilk ulk e ulk_g ulk..._w,

B-spline blending functions, order 2

NURBS

e Non-uniform Rational B-splines (NURBS)

e Rational function means ratio of two polynomials

e Some curves can be expressed as rational functions but not as
simple polynomials

e No known exact polynomial for circle

e Rational parametrization of unit circle on xy-plane:

1—u?

X(Uu) =
() 1+u®
2U

u =
y(u) 1+u?®

Z(u)=0

Tesselation

tesselation

Far = Less detailed
mesh

Near = More detailed
mesh

nd Schrader, 2000]

[£orin 3

Simplification

e Previously: Pre-generate mesh versions offline
e Tesselation shader unit new to GPU in DirectX 10 (2007)

e Subdivide faces on-the-fly to yield finer detail, generate new vertices,
primitives

e Mesh simplification/tesselation on GPU = Real time LoD

Tessellation Shaders

e Can subdivide curves, surfaces on the GPU

Lines Triangles

Where Does Tesselation Shader Fit?

Fixed number of vertices in/out ~

Vertex Shader

b

Primitive Assembly "

Can change number of vertices

Tessellation Control Shader ||

‘ Tessellation Primitive Generator |I_

h

Primitive Assembly ||*

‘ Tessellation Evaluation Shader' :

= Fixed Function

= Programmable

.
|| Geometry Shader ||
|

| Primitive Assembly ||

Rasterizer |

y

|| Fragment Shader ||

Geometry Shader

e After Tesselation shader. Can
e Handle whole primitives
e Generate new primitives

e Generate no primitives (cull)

Vertex Shader ||
!

Primitive Assembly

......

Tessellation Control Shader '

Tessellation Primitive Generator u

\ Tessellation Evaluation Shader'

Primitive‘ASSE'"bIY I

~ Geometry Shader “
|

Primitive Assembly |

]

Rasterizer |

X
| Fragment Shader |

References

e Hill and Kelley, chapter 11

e Angel and Shreiner, Interactive Computer Graphics,
6t edition, Chapter 10

e Shreiner, OpenGL Programming Guide, 8t edition

Computer Graphics (CS 4731)
Lecture 26: Image Manipulation

Prof Emmanuel Agu

Computer Science Dept.
Worcester Polytechnic Institute (WPI)

Image Processing

e Graphics concerned with creating artificial scenes
from geometry and shading descriptions
e |Image processing
Input is an image
Output is a modified version of input image

e Image processing operations include altering images,
remove noise, super-impose images

Image Processing

e Example: Sobel Filter

Original Image Sobel Filter

e Image Procin OpenGL: Fragment shader invoked on each
element of texture
e Performs calculation, outputs color to pixel in color buffer

Luminance

e Luminance of a color is its overall brightness (grayscale)
e Compute it luminance from RGB as

Luminance =R *0.2125+ G *0.7154 + B * 0.0721

Image Negative s

e Another example

(1.-R, 1.-G, 1.-B)

Edge Detection

e Edge Detection

e Compare adjacent pixels
If difference is “large”, this is an edge
If difference is “small”, not an edge

e Comparison can be done in color or luminance

Embossing

e Embossing is similar to edge detection

e Replace pixel color with grayscale proportional to contrast
with neighboring pixel

e Add highlights depending on angle of change

Toon Rendering for Non-Photorealistic Effects

Geometric Operations

e Examples: translating, rotating, scaling an image

Non-Linear Image Warps

Original Twirl Ripple Spherical

References

Mike Bailey and Steve Cunningham, Graphics Shaders (second
edition)

Wilhelm Burger and Mark Burge, Digital Image Processing: An

Algorithmic Introduction using Java, Springer Verlag Publishers

OpenGL 4.0 Shading Language Cookbook, David Wolff

Real Time Rendering (3 edition), Akenine-Moller, Haines and
Hoffman

Suman Nadella, CS 563 slides, Spring 2005

Computer Graphics
CS 4731 - Final Review

Prof Emmanuel Agu

Computer Science Dept.
Worcester Polytechnic Institute (WPI)

Exam Overview

Thursday, October 16, 2014 in-class
Midterm covered up to lecture 13 (Viewing & Camera Control)
Final covers lecture 14 till today’s class (lecture 26)
Can bring:

1 page cheat-sheet, hand-written (not typed)

Calculator
Will test:

Theoretical concepts

Mathematics

Algorithms

Programming

OpenGL/GLSL knowledge (program structure and commands)

Topics

e Projection

e Lighting, shading and materials

e Shadows and fog

e Texturing & Environment mapping
e Image manipulation

e Clipping (2D and 3D clipping) and viewport
transformation

e Hidden surface removal
e Rasterization (line drawing, polygon filling, antialiasing)
e Curves

