Computer Graphics (CS 4731)
Lecture 1: Introduction to
Computer Graphics

Prof Emmanuel Agu

Computer Science Dept.
Worcester Polytechnic Institute (WPI)

What is Computer Graphics (CG)?

e Computer graphics: algorithms, mathematics, data structures
that computer uses to generate PRETTY PICTURES

e Techniques (e.g. draw a cube, polygon) evolved over years
e Built into programmable libraries (OpenGL, DirectX, etc)

A

Computer-Generated!
Not a picture!

Photorealistic Vs Real-Time Graphics | ¢

Not this Class

This Class

* Real Time graphics: E.g. game engine
Milliseconds to render (30 FPS)
Lower image quality

e Photo-realistic: E.g ray tracing
Highest quality image possible
slow: may take days to render

Uses of Computer Graphics: Entertainment | 22°

e Entertainment: games

Courtesy: Spiderman

Uses of Computer Graphics

e Image processing:

alter images, remove noise, super-impose images

Original Image

(%

K,
St
. 9 . [y Jﬁl“
A Y

Sobel Filter

Uses of Computer Graphics

Simulators

Courtesy: Evans and Sutherland

Display math functions
E.g matlab

Uses of Computer Graphics

e Scientific analysis and visualization:

Courtesy:

Human Brain Project,
Denmark

000
0000
[X N
(XX
2D Vs. 3D oo
o
e 2-Dimensional (2D) e 3-Dimensional (3D)
e Flat e Objects have distances from viewer
e Objects no notion of distance from viewer e (x,y,z) values on screen

e Only (x,y) color values on screen

P d by L

DATAVIEWS

H|S| 4| ©fue 1| > r»

* This class covers both 2D & 3D!
e Also interaction: Clicking, dragging

About This Course -1

e Computer

Graphics has many aspects

e Computer Scientists create/program graphics tools (e.g. Maya, photoshop)

e Artists use CG tools/packages to create pretty pictures

e Most hobbyists follow artist path. Not much math! E.g. use blender

d 3 8 CoANs 2 ttings Wolors My Docaments\maya\projects\delta evoiscenesideitad
Fie Bk vedfy Geve Dwly oo Sea ved BStveh Aoy R oot oS e e
frome DM &RBIZ L2062 a«{*xg &.o} arE|EaSEs| - [[(3] ==z
a

T Gerasd| Curvar | Sutecer | Pobygers | Subdve | Daforssion | Animicn | Dnice] Rurdeing | Parfectc | Ton [Fu | Her | rDah| Custrs Pob Neceirg | retuvechirg| v |

?-ooao%mtﬂnsﬁastananA P _____

Vew Stadeg Uy Sn Renderer Fares
NG

! =< >3

4 3 [T 8 s » " 12 13 " » 16 17 ® 19 2 b1 2 bz} 24 R e
PR Py B e e R S Y [(B J

About This Course

e This Course: Computer Graphics for computer scientists!!!
e Teaches concepts, uses OpenGL as concrete example
e Courseis NOT

e just about programming OpenGL

e acomprehensive course in OpenGL. (Only parts of OpenGL covered)
e about using packages like Maya, Photoshop

About This Course

e Class is concerned with:
How to program computer graphics
Underlying mathematics, data structures, algorithms

e This course is a lot of work. Requires:
C/C++, shader programming
Lots of math, linear algebra, matrices

e We will combine:

Programmer’s view: Program OpenGL APlIs

Under the hood: Learn OpenGL internals (graphics algorithms, math,
implementation)

Course Text °

e Interactive Computer Graphics: A Top-Down Approach with Shader-based
OpenGL by Angel and Shreiner (6th edition), 2012

e Buy 6 edition (pure OpenGL) ... NOT 7t edition (WebGL)!!!

INTERACTIVE
COMPUTER INTERACTIVE
GRAPHICS COMPUTER GRAPHICS

A TOP-DOWN APPROACH

SOWARD ANGEL DAVE SHREINER

Syllabus Summary

2 Exams (50%), 4 Projects (50%)

Projects:
Develop OpenGL/GLSL code on any platform, must port to Zoolab machine
May discuss projects but turn in individual projects

Class website: http://web.cs.wpi.edu/~emmanuel/courses/cs4731/B16/

Cheating: Immediate ‘F’ in the course
Note: Using past projects on Internet, gitHub, bitBucket is cheating!

Advice:
Come to class
Read the text
Understand concepts before coding

Elements of 2D Graphics

e Polylines

o Text

e Filled regions

e Raster images (pictures)

Elements of 2D Graphics

e Polyline: vertices (corners) connected by straight lines
e Attributes: line thickness, color, etc

vertex

000
| X X)
[X |
o
Text
Text attributes: Font, color,
size, spacing, and orientation Big Text
Little Text
Devices have: Shadow Text
text mode NSNS AN NN
graphics mode.
Rotated TextOutlined text

Graphics mode: Text is drawn

Text mode: Text produced by SMALLCAPS
character generator, not drawn

Filled Regions :

e Filled region: shape filled with a color or pattern

e E.g: polygons

Polygons Filled with Color Polygons Filled with Pattern

Raster Images :

e Raster image (picture): 2D matrix of pixels (picture elements), in
different colors or grayscale.

Grayscale Image Color Image

Computer Graphics Libraries

e Functions to draw line, circle, image, etc

e Previously device-dependent
o Different OS => different graphics library
e Tedious! Difficult to port (e.g. move program Windows to Linux)
e ErrorProne

e Now cross-platform, device-independent libraries

e APIs: OpenGL, DirectX

e Working OpenGL program few changes to move from Windows to
Linux, etc

Graphics Processing Unit (GPU) ooo

e OpenGL implemented in hardware => FAST!!

e Programmable: as shaders

e GPU located either on
e PC motherboard (Intel) or
e Separate graphics card (Nvidia or ATI)

GPU on PC motherboard GPU on separate PCl express card

OpenGL Basics

e OpenGL’s function is Rendering (drawing)

e Rendering? — Convert geometric/mathematical object
descriptions into images
e OpenGL can render (draw):

2D and 3D
Geometric primitives (lines, dots, etc)

Bitmap images (pictures, .bmp, .jpg, etc)

OpenGL
Program

——— OpenGL

GL Utility Toolkit (GLUT) :

e OpenGL does NOT manage drawing window

e OpenGL

Window system independent
Concerned only with drawing (2D, 3D, images, etc)
No window management (create, resize, etc), very portable

e GLUT:

Minimal window management
Runs on different windowing systems (e.g. Windows, Linux)
Program that uses GLUT easily ported between windowing systems.

GLUT

OpenGL

GL Utility Toolkit (GLUT)

e No bells and whistles

No sliders, dialog boxes, elaborate menus, etc

e To add bells and whistles, use system’s API (or GLUI):

X window system
Apple: AGL
Microsoft :WGL, etc

Select NetWare Logon

=3
— GLUT
(minimal)

|<N0ne> ﬂ

Slider Dialog box

OpenGL Basics: Portability

e OpenGL programs behave same on different devices, OS

e Maximal portability
Display device independent (Monitor type, etc)
OS independent (Unix, Windows, etc)

Window system independent based (Windows, X, etc)

e E.g.If student writes OpenGL code on MAC in dorm, it runs on
Zoolab Windows machines

OpenGL Programming Interface o

® Programmer view of OpenGL
e Application Programmer Interface (API)
e Writes OpenGL application programs. E.g

glDrawArrays (GL_LINE LOOP, 0, N);

glFlush();
L Graphics .
cpplicaion library Hardware ~¢——— Mouse
program (APT)

____L .
s

Simplified OpenGL Pipeline °

e Vertices input, sequence of rendering steps (vertex processor,
clipper, rasterizer, fragment processor) image rendered

e This class: learn graphics rendering steps, algorithms, their order

Vertices—mVerleX L g Clipperand =1 o Rasterizer f—me— rogment L o picels
processor primitive assembler processor _ j
‘ ‘ ‘ ‘ | / '
Vertex Converts Fragment
Shader 3D to 2D (Pixel)

Shader

Vertex Vs Fragment °

e To draw a shape, OpenGL colors a corresponding group of pixels
(fragments) called rasterization
E.g yellow triangle converted to group of pixels to be colored yellow

e Vertex shader code manipulates vertices of shapes
e Fragment shader code manipulates pixels

i . F t
Vertex I Clipper and Raslerizer | ragmen

processor primitive assembler processor NF

\
\\
f S
\
\/ Converts shape \l

: to pixels (fragments)
Vertices Fragments

(pixels)

OpenGL Program? oo

e Usually has 3 files:

e .cpp file: containing OpenGL code, main() function
Does initialization, generates/loads geometry to be drawn

e Vertex shader: manipulates vertices (e.g. move vertices)

e Fragment shader: manipulates pixels/fragments (e.g change
color)

Vertex Shader Fragment

> Shader

4

void main() {
gl_FragColor = vecd(...);
}

4

O TR

void main() {

—» gl Position = vec4(...);
'Cp p program gl_PointSize = 10.0;

gl_FragColor

gt_PointSize| | gi_Position

Rendered
Image

Framebuffer

e Dedicated memory location:

Draw into framebuffer => shows up on screen
Located either on CPU (software) or GPU (hardware)

References

e Angel and Shreiner, Interactive Computer Graphics (6t
edition), Chapter 1

e Hill and Kelley, Computer Graphics using OpenGL (3" edition),
Chapter 1

