Computer Graphics 4731
Lecture 5: Fractals

Prof Emmanuel Agu

Computer Science Dept.
Worcester Polytechnic Institute (WPI)

What are Fractals?

e Mathematical expressions to generate pretty pictures

e Evaluate math functions to create drawings
approach infinity -> converge to image

e Utilizes recursion on computers
e Popularized by Benoit Mandelbrot (Yale university)
e Dimensional:
Line is 1-dimensional
Plane is 2-dimensional
e Defined in terms of self-similarity

Fractals: Self-similarity :

e See similar sub-images within image as we zoom in
e Example: surface roughness or profile same as we zoom in

.,.

A A‘A
NN

B AN &
\
;A .vxﬁ AG’A'. Aeng

Applications of Fractals

e Clouds

e Grass

e Fire

e Modeling mountains (terrain)

e Coastline

e Branches of a tree

e Surface of a sponge

e Cracks in the pavement

e Designing antennae (www.fractenna.com)

Example: Mandelbrot Set

Example: Fractal Terrain s

Courtesy: Mountain 3D
Fractal Terrain software

Application: Fractal Art :

Courtesy: Internet
Fractal Art Contest

Recall: Sierpinski Gasket Program

e Popular fractal

Koch Curves °

e Discoveredin 1904 by Helge von Koch

e Start with straight line of length 1

e Recursively:
e Divide line into 3 equal parts
e Replace middle section with triangular bump, sides of length 1/3
e New length=4/3

Koch Snowflakes

Can form Koch snowflake by joining three Koch curves

Koch Snowflakes

Pseudocode, to draw K,,:

If (n equals 0) draw straight line

Else{

Draw K, _;

Turn left 60°
Draw K,,_;

Turn right 120°
Draw K,,_;

Turn left 60°

Draw K,,_;

L-Systems: Lindenmayer Systems s

e Express complex curves as simple set of string-production rules
e Example rules:
e ‘F':goforwarda distance 1 in current direction
e ‘+:turnright through angle A degrees
e ‘““:turnleft through angle A degrees
e Using these rules, can express koch curve as: “F-F++F-F”
e Angle A =60 degrees

&%

OU)

L-Systems: Koch Curves :

e Rule for Koch curves is F -> F-F++F-F

e Means each iteration replaces every ‘F’ occurrence with “F-F++F-F”
e So, ifinitial string (called the atom) is ‘F’, then

o S, ="F-F++F-F”

o S, ="F-F++F-F- F-F++F-F++ F-F++F-F- F-F++F-F”

o S;=...

e Gets very large quickly

K,:

Hilbert Curve

e Discovered by German Scientist, David Hilbert in late 1900s

e Space filling curve

e Drawn by connecting centers of 4 sub-squares, make up larger
square.

e Iteration 0: 3 segments connect 4 centers in upside-down U

Iteration O

Hilbert Curve: Iteration 1 e

e Each of 4 squares divided into 4 more squares

e U shape shrunk to half its original size, copied into 4 sectors
e In top left, simply copied, top right: it's flipped vertically

e In the bottom left, rotated 90 degrees clockwise,

e Bottom right, rotated 90 degrees counter-clockwise.

e 4 pieces connected with 3 segments, each of which is same
size as the shrunken pieces of the U shape (in red)

l
L

)

|
]

Hilbert Curve: Iteration 2 e

e Each of the 16 squares from iteration 1 divided into 4 squares
e Shape from iteration 1 shrunk and copied.
e 3 connecting segments (shown in red) are added to complete

the curve.

|_|

e Implementation? Recursion is your friend!!

G
C

I
J_

C

:
J

[

i
1
!

G
L
5

Gingerbread Man

e Each new point q is formed from previous point p using the
equation

It

gx = M(1+ 2L} - py+ |p.x — LM]|;
t:?*_}' - p.x.

e For 640 x 480 display area, use
M=40 L=3

e A good starting pointis (115, 121)

Iterated Function Systems (IFS) °

e Recursively call a function
e Does result converge to an image? What image?
e |FS’s converge to an image
e Examples:
e The Fern
e The Mandelbrot set

The Fern

Use either 1, f2, 3 or f4 with
probabilities .01, .07,.07,.85
to generate next point

Function f1 (previous point)

Start at initial
point (0,0). Draw .01
dot at (0,0)

N\

(0,0)

o Function f2 (previous point)

@ Function f3 (previous point)

.85

Function f4 (previous point)

{Ref: Peitgen: Science of Fractals, p.221 ff} {Barnsley & Sloan,
"A Better way to Compress Images" BYTE, Jan 1988, p.215}

(XYY
o000
[X N
The Fern 3
o
Each new point (new.x,new.y) is formed from the prior point (old.x,old.y)
using the rule:
new.x := a[index] * old.x + c[index] * old.y + tx[index];
Function f1

new.y := b[index] * old.x + d[index] * old.y + ty[index]; Py

a[1]:= 0.0; b[1] := 0.0; c[1] := 0.0; d[1] := 0.16;
tx[1] := 0.0; ty[1] := 0.0; (i.e values for function f1) @ Function2
a[2]:= 0.2; b[2] :=0.23; c[2] :=-0.26; d[2] := 0.22;

tx[2] := 0.0; ty[2] := 1.6; (values for function f2) 0.0

® Function f3

a[3]):=-0.15; b[3] := 0.26; c[3] := 0.28; d[3] := 0.24; 85 |
tx[3] := 0.0; ty[3] := 0.44; (values for function f3) Function 4
a[4]:= 0.85; b[4] :=-0.04; c[4] := 0.04; d[4] := 0.85;

tx[4] := 0.0; ty[4] := 1.6; (values for function f4)

Mandelbrot Set

e Based on iteration theory
e Function of interest:

f(2)=(s)2 +C

e Sequence of values (or orbit):
d, =(s)’ +c
d, =((s)* +c)’ +c
d, =(((s)’ +c)*+c)’ +c
d, = ((((s)’ +¢c)* +c)* +c)° +¢

Mandelbrot Set

e Orbit dependsonsandc
e Basic question;:
For given s and ¢,
does function stay finite? (within Mandelbrot set)
explode to infinity? (outside Mandelbrot set)
e Definition: if |d| < 1, orbit is finite else inifinite
e Examples orbits:
s=0,c=-1, orbit=0,-1,0,-1,0,-1,0,-1,.....finite
s=0,c=1,o0rbit=0,1,2,5,26,677...... explodes

Mandelbrot Set

e Mandelbrot set: use complex numbers for cand s
e Alwayssets=0
e Choose c as a complex number
e For example:
s=0,c=0.2+0.5i
e Hence, orbit:
0, ¢ c’+c, (c?+c)f+c, ...

e Definition: Mandelbrot set includes all finite orbit ¢

Mandelbrot Set

e Some complex number math:
1*1=-1

e Example:

21*31 =—6

e Modulus of a complex number, z = ai + b:

\z\zx/a2+b2

e Squaring a complex number:

(X+yi)* = (x" —y*) +(2xy)]

Im

000

00

| X J

o
Argand
diagram

Re

:.
Mandelbrot Set
e Examples: Calculate first 3 terms
with s=2, c=-1, terms are
22 -1=3
3°-1=8
8% -1=63
with s =0, ¢ = -2+i (X+Vi)® = (X = y?)+(2xy)i
0+ (—2+1)=-2+I

(—2+i)° +(-2+i)=1-3i
(1-3i) +(-2+i) = -10-5i

Mandelbrot Set

e Fixed points: Some complex numbers converge
to certain values after x iterations.

e Example:

s=0,c=-0.2+0.5i converges to —0.249227 +
0.333677i after 80 iterations

Experiment: square —0.249227 + 0.333677i and add
-0.2 + 0.5i

e Mandelbrot set depends on the fact the
convergence of certain complex numbers

Mandelbrot Set Routine

e Math theory says calculate terms to infinity
e Cannot iterate forever: our program will hang!
e |nstead iterate 100 times
e Math theorem:
if no term has exceeded 2 after 100 iterations, never will!
e Routine returns:
100, if modulus doesn’t exceed 2 after 100 iterations
Number of times iterated before modulus exceeds 2, or

Number < 100

S, C — > Mande_lbrot (first term > 2)
function

Number = 100 (did not explode)

Mandelbrot dwell() function

(X+yi)* =(x*—y*)+(2xy)i
(X+Vi)* +(cy +Ci) =[(X* —y*) +Cy I+ (2xy +¢))i

int dwell (double cx, double cy)
{ // return true dwell or Num, whichever is smaller
#define Num 100 // increase this for better pics

double tmp, dx = cx, dy = cy, fsq = cx*cx + cy*cy;

for (int count = 0;count <= Num && fsq <= 4; count++)

{
tmp = dx; // save old real part 5 5
dx = dx*dx - dy*dy + cx; // new real part [(X _y)+CX]
dy = 2.0 * tmp * dy + cy; // new imag. Part (2xy_|_CY)|
fsq = dx*dx + dy*dy;

}

return count; // number of iterations used

Mandelbrot Set °

e Map real part to x-axis

e Map imaginary part to y-axis
e Decide range of complex numbers to investigate. E.g:
e Xinrange [-2.25: 0.75], Yinrange [-1.5: 1.5]

A Range of complex
Numbers (c)

Xin range [-2.25: 0.75],
Y in range [-1.5: 1.5]

i -1.5,1
Representation (A,‘)
of -1.5+i

v

Call ortho2D
— toset range of

values to explore

Mandelbrot Set °

e Set world window (ortho2D) (range of complex numbers to investigate)
e Xinrange [-2.25:0.75], Yinrange [-1.5: 1.5]

e Setviewport (glviewport). E.g:
e Viewport =[V.L, V.R, V.B, V.T]=[60,380,80,240]

ortho2D Im A

window

Mandelbrot Set

e So, for each pixel:
For each point (¢) in world window call your dwell() function
Assign color <Red,Green,Blue> based on dwell() return value
e Choice of color determines how pretty
e Colorassignment:
Basic: In set (i.e. dwell() = 100), color = black, else color = white
Discrete: Ranges of return values map to same color
E.g 0 — 20 iterations = color 1
20 — 40 iterations = color 2, etc. .

Continuous: Use a function intensities
A

l

|
|
‘ I'CLI.}L‘”U\\
\

blue

Number < 100 black
Mandelbrot / (first term > 2) ——— .

S,C—> : ,
function \ A
Number = 100 (did not explode)

FREE SOFTWARE

e Free fractal generating software
e Fractint
e FracZoom
e 3DFrac

References

e Angel and Shreiner, Interactive Computer Graphics, 6t
edition, Chapter 9

e Hill and Kelley, Computer Graphics using OpenGL, 3" edition,
Appendix 4

