
Hidden-Surface Removal

 If multiple surfaces overlap, we want to see only closest

 OpenGL uses hidden-surface technique called the z-buffer
algorithm

 Z-buffer compares objects distances from viewer (depth) to
determine closer objects

If overlap,

Draw face A (front face)

Do not draw faces B and C

Using OpenGL’s z-buffer algorithm

 Z-buffer uses an extra buffer, (the z-buffer), to store
depth information, compare distance from viewer

 3 steps to set up Z-buffer:

1. In main() function
glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB | GLUT_DEPTH)

2. Enabled in init() function
glEnable(GL_DEPTH_TEST)

3. Clear depth buffer whenever we clear screen
glClear(GL_COLOR_BUFFER_BIT | DEPTH_BUFFER_BIT)

3D Mesh file formats

 3D meshes usually stored in 3D file format

 Format defines how vertices, edges, and faces are declared

 Over 400 different file formats

 Polygon File Format (PLY) used a lot in graphics

 Originally PLY was used to store 3D files from 3D scanner

 We will use PLY files in this class

Sample PLY File

ply

format ascii 1.0

comment this is a simple file

obj_info any data, in one line of free form text element vertex 3

property float x

property float y

property float z

element face 1

property list uchar int vertex_indices

end_header

-1 0 0

0 1 0

1 0 0

3 0 1 2

Georgia Tech Large Models Archive

Stanford 3D Scanning Repository

Lucy: 28 million faces Happy Buddha: 9 million faces

Computer Graphics (CS 4731)
Lecture 9: Introduction to

Transformations

Prof Emmanuel Agu

Computer Science Dept.

Worcester Polytechnic Institute (WPI)

Introduction to Transformations

 May also want to transform objects by changing its:

 Position (translation)

 Size (scaling)

 Orientation (rotation)

 Shapes (shear)

Translation

 Move each vertex by same distance d = (dx, dy, dz)

object translation: every point displaced

by same vector

Scaling

S = S(sx, sy, sz)

x’=sxx

y’=syy

z’=szz

p’=Sp

Expand or contract along each axis (fixed point of origin)

where

Introduction to Transformations

 We can transform (translation, scaling, rotation, shearing, etc)
object by applying matrix multiplications to object vertices

 Note: point (x,y,z) needs to be represented as (x,y,z,1), also
called Homogeneous coordinates

























































110001

'

'

'

34333231

24232221

14131211

z

y

x

z

y

x

P

P

P

mmmm

mmmm

mmmm

P

P

P

Original Vertex

Transformed Vertex Transform Matrix

Why Matrices?

 Multiple transform matrices can be pre-multiplied

 One final resulting matrix applied (efficient!)

 For example:

transform 1 x transform 2 x transform 3 ….



















































































1100010001

34333231

24232221

14131211

34333231

24232221

14131211

z

y

x

z

y

x

P

P

P

mmmm

mmmm

mmmm

mmmm

mmmm

mmmm

Q

Q

Q

Original Point
Transformed Point

Transform Matrices can

Be pre-multiplied

3D Translation Example

 Example: If we translate a point (2,2,2) by displacement (2,4,6), new
location of point is (4,6,8)

object Translation of object



















1

8

6

4



















1000

6100

4010

2001



















1

2

2

2

 

Translate(2,4,6)

Translation Matrix Original point
Translated

point

Translate x: 2 + 2 = 4

Translate y: 2 + 4 = 6

Translate z: 2 + 6 = 4

Using matrix multiplication for translation

3D Translation

 Translate object = Move each vertex by same distance d = (dx, dy, dz)

object
Translation of object





















1

'

'

'

z

y

x



















1000

100

010

001

z

y

x

d

d

d





















1

z

y

x

 *
Where:

 x’= x + dx

 y’= y + dy

 z’= z + dz

Translate(dx,dy,dz)

Translation Matrix

Scaling Example

If we scale a point (2,4,6) by scaling factor (0.5,0.5,0.5)
Scaled point position = (1, 2, 3)



























































1

6

4

2

1000

05.000

005.00

0005.0

1

3

2

1

Scale Matrix for

Scale(0.5, 0.5, 0.5)

Scale x: 2 x 0.5 = 1

Scale y: 4 x 0.5 = 2

Scale z: 6 x 0.5 = 3

Scaling

x’=sxx

y’=syy

z’=szz

Scale object = Move each object vertex by scale factor S = (Sx, Sy, Sz)
Expand or contract along each axis (relative to origin)



























































11000

000

000

000

1

'

'

'

z

y

x

S

S

S

z

y

x

z

y

x

Scale(Sx,Sy,Sz)
Scale Matrix

Using matrix multiplication for scaling

Shearing

 Y coordinates are unaffected, but x cordinates are translated linearly
with y

 That is:

 y’ = y

 x’ = x + y * h























































1100

010

01

1

y

xh

y

x

h is fraction of y to be added to x

(x,y)

(x + y*h, y)

y*hx

3D Shear

Reflection

 corresponds to negative scale factors

originalsx = -1 sy = 1

sx = -1 sy = -1 sx = 1 sy = -1

References

 Angel and Shreiner, Chapter 3

 Hill and Kelley, Chapter 5

