
Hidden-Surface Removal

 If multiple surfaces overlap, we want to see only closest

 OpenGL uses hidden-surface technique called the z-buffer
algorithm 

 Z-buffer compares objects distances from viewer (depth) to 
determine closer  objects 

If overlap, 

Draw face A (front face)

Do not draw faces B and C



Using OpenGL’s  z-buffer algorithm

 Z-buffer uses an extra buffer, (the z-buffer), to store 
depth information, compare distance from viewer

 3 steps to set up Z-buffer:

1. In main( ) function
glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB | GLUT_DEPTH)

2. Enabled in init( ) function
glEnable(GL_DEPTH_TEST)

3. Clear depth buffer whenever we clear screen
glClear(GL_COLOR_BUFFER_BIT | DEPTH_BUFFER_BIT)



3D Mesh file formats

 3D meshes usually stored in 3D file format

 Format defines how vertices, edges, and faces are declared

 Over 400 different file formats

 Polygon File Format (PLY) used a lot in graphics

 Originally PLY was used to store 3D files from 3D scanner

 We will use PLY files in this class



Sample PLY File

ply 

format ascii 1.0 

comment this is a simple file 

obj_info any data, in one line of free form text element vertex 3 

property float x 

property float y 

property float z 

element face 1 

property list uchar int vertex_indices 

end_header 

-1 0 0 

0 1 0 

1 0 0 

3 0 1 2



Georgia Tech Large Models Archive



Stanford 3D Scanning Repository

Lucy: 28 million faces Happy Buddha: 9 million faces
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Introduction to Transformations

 May also want to transform objects by changing its: 

 Position (translation)

 Size (scaling)

 Orientation (rotation)

 Shapes (shear)



Translation

 Move each vertex by same distance d = (dx, dy, dz)

object translation: every point displaced

by same vector



Scaling

S = S(sx, sy, sz) 

x’=sxx

y’=syy

z’=szz

p’=Sp

Expand or contract along each axis (fixed point of origin)

where



Introduction to Transformations

 We can transform (translation, scaling, rotation, shearing, etc) 
object by applying matrix multiplications to object vertices

 Note: point (x,y,z) needs to be represented as (x,y,z,1), also 
called Homogeneous coordinates
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Why Matrices?

 Multiple transform matrices can be pre-multiplied

 One final resulting matrix applied (efficient!)

 For example:

transform 1   x  transform 2 x  transform 3  …. 
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3D Translation Example

 Example: If we translate a point (2,2,2) by displacement (2,4,6), new 
location of point is (4,6,8)

object Translation of object
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Translate(2,4,6)

Translation Matrix Original point
Translated 

point

Translate x: 2 + 2 = 4

Translate y: 2 + 4 = 6

Translate z: 2 + 6 = 4

Using matrix multiplication for translation



3D Translation

 Translate object = Move each vertex by same distance d = (dx, dy, dz)

object
Translation of object
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 x’= x + dx

 y’= y + dy

 z’= z + dz

Translate(dx,dy,dz)

Translation Matrix



Scaling Example

If we scale a point (2,4,6) by scaling factor (0.5,0.5,0.5) 
Scaled point position = (1, 2, 3)
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Scale(0.5, 0.5, 0.5)

Scale x: 2 x 0.5 = 1

Scale y: 4 x 0.5 = 2

Scale z: 6 x  0.5 = 3



Scaling

x’=sxx

y’=syy

z’=szz

Scale object = Move each object vertex by scale factor S = (Sx, Sy, Sz)
Expand or contract along each axis (relative to origin)



























































11000

000

000

000

1

'

'

'

z

y

x

S

S

S

z

y

x

z

y

x

Scale(Sx,Sy,Sz)
Scale Matrix

Using matrix multiplication for scaling



Shearing

 Y coordinates are unaffected, but x cordinates are translated linearly 
with y

 That is:

 y’ = y 

 x’ = x + y * h
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3D Shear



Reflection

 corresponds to negative scale factors

originalsx = -1 sy = 1

sx = -1 sy = -1 sx = 1 sy = -1
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