Computer Graphics 4731
Lecture 10: Rotations and Matrix
Concatenation

Prof Emmanuel Agu

Computer Science Dept.
Worcester Polytechnic Institute (WPI)

Rotating in 3D

e Many degrees of freedom. Rotate about what axis?
e 3D rotation: about a defined axis
e Different transform matrix for:

Rotation about x-axis

Rotation about y-axis

Rotation about z-axis

Rotating in 3D

e New terminology
X-roll: rotation about x-axis
Y-roll: rotation about y-axis
Z-roll: rotation about z-axis

e Which way is +ve rotation

Look in —ve direction (into +ve arrow)

y
CCW is +ve rotation ()

e

OB

Rotating in 3D ees

y

a) the barn b) =70° x-roll y

X /

¢) 30° y-roll Yy d) -90° z-roll Yy

Rotating in 3D

e For arotation angle, f about an axis
e Define:

¢ = cos(p3) s =sin(f)

X-roll or (RotateX)

(1 0 0 0)
O ¢c -s O
RBI=10 « . o
0 0 0 1)

'YX
:.
Rotating in 3D
(¢ 0 s 0)
y-roll (or RotateY)
R(IB)— O 1 0 O Rul-es:. |
y _s O C O ;\(/)\:lrjl:reml In rotation row,
000 e
*Write c¢,s in rect pattern
z-roll (or RotateZ) (c —-s 0 0)
s ¢ 00
R —
B)=l0 0 1 o
0 0 0 1

Example: Rotating in 3D

Question: Using y-roll equation, rotate P = (3,1,4) by 30 degrees:

Answer: ¢ = cos(30) = 0.866, s = sin(30) = 0.5, and

(¢ 0 s 0Y3) (46"
Q_01001_1
l-s 0 ¢ 04| [1.964

L0 0 0 1)A1) 1)

Linel: 3.c+1.0 +4s+1.0
=3x0.866+4x05=4.6

3D Rotation

e Rotate(angle, ux, uy, uz): rotate by angle g about an arbitrary
axis (a vector) passing through origin and (ux, uy, uz)

e Note: Angular position of u specified as azimuth/longitude (&)

and latitude (4)
A7 /ux, uy, uz)

4u

Approach 1: 3D Rotation About 3
Arbitrary Axis 2

e Can compose arbitrary rotation as combination of:
e X-roll (by anangleB)
e Y-roll (byananglep)
e Z-roll (by an angle)

M =R,(5)R, ()R, ()

~

Read in reverse order

Approach 1: 3D Rotation using Euler | s¢
Theorem

e Classic: use Euler’s theorem

e Euler’s theorem: any sequence of rotations = one
rotation about some axis

e Want to rotate [3 about arbitrary axis u through origin

e Our approach:
Use two rotations to align u and x-axis
Do x-roll through angle 3
Negate two previous rotations to de-align u and x-axis

Approach 1: 3D Rotation using Euler

Theorem

e Note: Angular position of u specified as azimuth (&)

and latitude (¢)

e First try to align u with x axis

Approach 1: 3D Rotation using Euler

Theorem

e Step 1: Do y-roll to line up rotation axis with x-y p

R, (6)

dane

Approach 1: 3D Rotation using Euler

Theorem

e Step 2: Do z-roll to line up rotation axis with x axis

Pz (_¢)

R, (6)

Approach 1: 3D Rotation using Euler | 22:°

Theorem

e Remember: Our goal is to do rotation by g around u

e But axis uis now lined up with x axis. So,

e Step 3: Do x-roll by g around axis u

Y A

Z/

R, (B)R,(-#)R, (6)

Approach 1: 3D Rotation using Euler | 323

Theorem

e Next 2 steps are to return vector u to original position

e Step 4: Do z-rollinx-y p

dane

R, (¢)

R, (PR, (=9)R, (6)

Approach 1: 3D Rotation using Euler
Theorem

e Step 5: Do y-roll to return u to original position
R,(8) =R, (-O)R, (AR, (B)R,(-4)R, (6)

Y A

Approach 2: Rotation using 4
Quaternions

e Extension of imaginary numbers from 2 to 3 dimensions
e Requires 1 real and 3 imaginary components |, |, K

g=0o+0;1+0,)+0sK

e Quaternions can express rotations on sphere smoothly
and efficiently

Approach 2: Rotation using
Quaternions

e Derivation skipped! Check answer
e Solution has lots of symmetry

[c+(@-cu” (@-c)uu, +su, (I-c)u,u, +su,

l-c)uu, +su, c+@-cu,” (-c)u,u,—su,
2

(l-cjuu,-su, (@d-cuu,-su, c+(1-c)u,

N 0 0 0

R(B) =

C= COS(,B) S = sin(,B) Arbitrary axis u

0)

L

Inverse Matrices

e Can compute inverse matrices by general formulas
e But some easy inverse transform observations
e Translation: T'l(dx, dy, d,) =T(-d, -d,, -d,)
o Scaling:S*(s,, s,, s,)=S(1/s,, 1/s,, 1/s,)
e Rotation: R '1(q) = R(-q)
Holds for any rotation matrix

Instancing

e During modeling, often start with simple object centered at
origin, aligned with axis, and unit size

e Can declare one copy of each shape in scene
e E.g.declare 1 mesh for soldier, 500 instances to create army
e Then apply instance transformation to its vertices to

Scale

Orient _T_,_,,_T_,

Locate

Rotation About Arbitrary Point other | 3:3°
than the Origin :

e Default rotation matrix is about origin

e How to rotate about any arbitrary point p; (Not origin)?
e Move fixed point to origin T(-py)
e Rotate R(0)
e Move fixed point back T(p;)

S0, M = T(py) R(0) T(-py)

-
*
o
_
—b
-
\.
o

Scale about Arbitrary Center

e Similary, default scaling is about origin

e To scale about arbitrary point P = (Px, Py, Pz) by (Sx, Sy, Sz)
1. Translate object by T(-Px, -Py, -Pz) so P coincides with origin
2. Scale object by (Sx, Sy, Sz)
3. Translate object back: T(Px, Py, Py)

e In matrix form: T(Px,Py,Pz) (Sx, Sy, Sz) T(-Px,-Py,-Pz) * P

XY (1 00 PxXYS, 0 0 O0Y1 0 0 —Px) x
y| |0 10 PO s, 0 0J010 -Pyly
z| |0 01 Pz 0 0 S 0[0 0 1 —Pz|z
1) looo 1)l0 0o o 1J000 1 |1

Example

e Rotation about z axis by 30 degrees about a fixed point
(1.0, 2.0, 3.0)

mat 4 m = Identity() ;

m = Translate (1.0, 2.0, 3.0)*
Rotate (30.0, 0.0, 0.0, 1.0)*
Translate(-1.0, -2.0, -3.0);

e Remember last matrix specified in program (i.e.
translate matrix in example) is first applied

References

e Angel and Shreiner, Chapter 3

e Hill and Kelley, Computer Graphics Using OpenGL, 3"
edition

