Computer Graphics (CS 4731)
Lecture 13: Viewing & Camera Control

Prof Emmanuel Agu

Computer Science Dept.
Worcester Polytechnic Institute (WPI)

3D Viewing?

e Objects inside view volume drawn to viewport (screen)

e Objects outside view volume clipped (not drawn)!

1. Set camera position

\

camera

C

tripod

2. Set view volume

(3D region of interest)
viewing ‘/
volume

M

Different View Volume Shapes :

Orthogonal view volume

e Different view volume => different look

e Foreshortening? Near objects bigger
e Perpective projection has foreshortening

e Orthogonal projection: no foreshortening

¥ I i
.| .

| 7] 15

o LB R

»

,'

S R ~
A7 1 13
;/J/WIIIFE, =

oo
%

5)
]
i

The World Frame oo

e Objects/scene initially defined in world frame
e World Frame origin at (0,0,0)

e Objects positioned, oriented (translate, scale, rotate
transformations) applied to objects in world frame

5

World frame
(Origin at 0,0,0)

O

Camera Frame -

e More natural to describe object positions relative to camera (eye)
o Why?

e Qur view of the world
e First person shooter games

Camera Frame

e Viewing: After user chooses camera (eye) position, represent
objects in camera frame (origin at eye position)

e Viewing transformation: Converts object (x,y,z) positions in

world frame to positions in camera frame

World frame
(Origin at 0,0,0)

Camera frame
(Origin at camera)

Default OpenGL Camera

e Initially Camera at origin: object and camera frames same
e Points in negative z direction

e Default view volume is cube with sides of length 2

Y

Default view volume clipped out

(objects in volume ‘2/' /
are seen
) \ | | |
4

e
7/

.’/‘/ e Proiection p|0ne
z z=0

Moving Camera Frame :

Same relative distance after
Same result/look

RN

Translate objects -5 Translate camera +5
away from camera away from objects

default frames
Y, Ye O
; x O

= L7 17
A TR N\

Moving the Camera

e We can move camera using sequence of rotations

and translations

e Example: side view
e Rotate the camera
e Move it away from origin
e Model-view matrix C=TR

// Using mat.h

mat4d t = Translate (0.0, 0.0, -d);

mat4 ry = RotateY¥(90.0) ;
mat4d m = t¥*ry;

i

- X

A

Moving the Camera Frame .

e Object distances relative to camera determined by the
model-view matrix
e Transforms (scale, translate, rotate) go into modelview matrix
e Camera transforms also go in modelview matrix (CTV)

Object transforms
Camera (Rotate, Scale
Translate)

o
M

Transforms
C

T

The LookAt Function e

e Previously, command gluLookAt to position camera
e gluLookAt deprecated!!
e Homegrown mat4 method LookAt() in mat.h

e Sets camera position, transforms object distances to
camera frame

void display() {

mat4 mv = LookAt (vecd4 eye, vecd at, vecd up);

} \ Builds 4x4 matrix for positioning, orienting

Camera and puts it into variable mv

The LookAt Function

LookAt (eye, at, up)
\aE., aF, Gt}
\y 4
(up,r Up,. UP,) o Vore

_

N1

IS

,

(eye eye,, eye)

Programmer defines:

Z

-

* eye position

* LookAt point (at) and

But Why do we set
Up direction?

e Up vector (Up direction usually (0,1,0))

Nate Robbins LookAt Demo

Warld-space view SCreen-space view

Command manipulation window

glTranslatef(0.00 , 0.00 , 0.00);
glRotatef(0.0 ,0.00 ,1.00 ,0.00);
glScalef(1.00 , 1.00 , 1.00 J;

giBegin(...);

Click on the arguments and move the mouse to modify values.

World- space view Screen-space view

Command manipulation window

GlLfloat pos[4] = { 1.50 , 1.00 , 1.00 , 0.00 };
gluLookAt(0.00 ,0.00 ,2.00 , <-eye
000 ,000 ,000 , <- center

000 ,1.00 ,000); <-up

glLightfv(GL_LIGHT0, GL_POSITION, pos);

Click on the arguments and move the mouse to modify values.

What does LookAt do? :

e Programmer defines eye, lookAt and Up

e LookAt method:

e Forms new axes (u, v, n) at camera

e Transform objects from world to eye camera frame

Eye coordinate

World coordinate
Frame

Frame

AS

Camera with Arbitrary Orientation o2

and Position

e Define new axes (u, v, n) at eye

e v points vertically upward,

e naway from the view volume,

e uatright anglesto bothnandv.
e The cameralooks toward -n.

e All vectors are normalized.

Eye coordinate

Frame (new)

ﬁ:

World coordinate
Frame (old)

LookAt: Effect of Changing Eye Position
or LookAt Point

e Programmer sets LookAt (eye, at, up)
o If eye, lookAt point changes => u,v,n changes

Viewing Transformation Steps

1. Form camera (u,v,n) frame

2. Transform objects from world frame (Composes matrix
for coordinate transformation)

e Next, let’s form camera (u,v,n) frame

(0,1,0) (1,0,0)

Constructing U,V,N Camera Frame

e Lookat arguments: LookAt (eye, at, up)
e Known: eye position, LookAt Point, up vector
e Derive: new origin and three basis (u,v,n) vectors

Lookat Point

Eye Coordinate Frame

e New Origin: eye position (that was easy)

e 3 basis vectors:

e one is the normal vector (n) of the viewing plane,

e other two (uand v) span the viewing plane

world o

Lookat Point

A

Figin

[
»

(u,v,n should all be orthogonal)

n is pointing away from the
world because we use left
hand coordinate system

N = eye - Lookat Point
n= N/ |[N]|

T

Remember u,v,n should
be all unit vectors

Eye Coordinate Frame

e How about u and v?

eWe can get u first -
u eu is a vector that is perp
to the plane spanned by

Lookat N and view up vector (V_up)

eye

U = V_up X n

v

u =U/ |U|

Eye Coordinate Frame

How about v?

Knowing n and u, getting v

IS easy
Lookat
vV = N XU

v is already normalized

v

Eye Coordinate Frame

Put it all together

Lookat

v

Eye space origin: (Eye.x , Eye.y,Eye.z)
Basis vectors:

(eye — Lookat) / | eye — Lookat|
(V_upx n)/ | V_upxn|
n x u

o00
00
| X J
o
Step 2: World to Eye Transformation
e Next, use u, v, n to compose LookAt matrix
e Transformation matrix (M,,.) ?
P’ - MwZex P
v u 1. Come up with transformation
ty \A sequence that lines up eye frame
P N with world frame
(o) Eye
world frame 2. Apply this transform sequence to
.- point P in reverse order

World to Eye Transformation

Rotate eye frame to “align” it with world frame

Translate (-ex, -ey, -ez) to align origin with eye

Rotation: ux uy uz O
vx vy vz O

u nx ny nz O
ty \L, . 000 1
(ex,ey,ez)
world

> X Translation: 1 0 0 -ex
O 1 0 -ey
O 0 1 -ez

O 0 O 1

World to Eye Transformation °

Transformation order: apply the transformation to the
object in reverse order - translation first, and then rotate

Rotation Translation
_ ux uy ux O 1 0 0 -ex
Mwze vx vy vz O 0 1 0 -ey
nx ny nz 0O O 0 1 -ez
O 0 O 1 O 0 O 1
V u
Y v’ n ux uy uz -e.u Multiplied together
(ex,ey,ez) _ VX VY VZ -€ .V, — —|pokAttransform
worl|d — NX Ny nz -e.n
X O 0 O 1

Note: e.u = ex.ux + ey.uy + ez.uz

e.v = ex.vx + ey.vy + ez.vz

e.n = ex.nx + ey.ny + ez.nz

lookAt Implementation (from mat.h)

Eye space origin: (Eye.x , Eye.y,Eye.z)

Basis vectors:

n = (eye - Lookat) / | eye — Lookat|
u = (V_upx n)/ | V_up xn|
v = n x u

ux uy uz
VX VY VZ
NX Ny nz
0 0 O

-e. u

-e .V

-e. n
1

matd4d LookAt(const vecdé& eye, const vecd& at, const vecdé& up)

vecd4d n = normalize(eye - at);

vecd4d u = normalize (cross(up,n));
vecd v = normalize(cross(n,u));
vecd t = vecd4(0.0, 0.0, 0.0, 1.0);
mat4d ¢ = matd4(u, v, n, t);

return ¢ * Translate(-eye);

References

e Interactive Computer Graphics, Angel and Shreiner,
Chapter 4

e Computer Graphics using OpenGL (3" edition), Hill
and Kelley

