
Computer Graphics (CS 4731)
Lecture 13: Viewing & Camera Control

Prof Emmanuel Agu

Computer Science Dept.

Worcester Polytechnic Institute (WPI)

3D Viewing?

 Objects inside view volume drawn to viewport (screen)

 Objects outside view volume clipped (not drawn)!

1. Set camera position

2. Set view volume

(3D region of interest)

Different View Volume Shapes

 Different view volume => different look

 Foreshortening? Near objects bigger

 Perpective projection has foreshortening

 Orthogonal projection: no foreshortening

x

y

z

x

y

z

Perspective view volume
Orthogonal view volume

 Objects/scene initially defined in world frame

 World Frame origin at (0,0,0)

 Objects positioned, oriented (translate, scale, rotate
transformations) applied to objects in world frame

The World Frame

World frame

(Origin at 0,0,0)

Camera Frame

 More natural to describe object positions relative to camera (eye)

 Why?
 Our view of the world

 First person shooter games

Camera Frame

 Viewing: After user chooses camera (eye) position, represent
objects in camera frame (origin at eye position)

 Viewing transformation: Converts object (x,y,z) positions in
world frame to positions in camera frame

World frame

(Origin at 0,0,0)

Camera frame

(Origin at camera)

Default OpenGL Camera

 Initially Camera at origin: object and camera frames same

 Points in negative z direction

 Default view volume is cube with sides of length 2

clipped out

z=0

2

Default view volume

(objects in volume

are seen)

Moving Camera Frame

default frames

Translate objects -5
away from camera

Translate camera +5
away from objects

Same relative distance after
Same result/look

Moving the Camera

 We can move camera using sequence of rotations
and translations

 Example: side view

 Rotate the camera

 Move it away from origin

 Model-view matrix C = TR

// Using mat.h

mat4 t = Translate (0.0, 0.0, -d);

mat4 ry = RotateY(90.0);

mat4 m = t*ry;

Moving the Camera Frame

 Object distances relative to camera determined by the
model-view matrix

 Transforms (scale, translate, rotate) go into modelview matrix

 Camera transforms also go in modelview matrix (CTM)

CTM

Camera

Transforms

Object transforms
(Rotate, Scale

Translate)

The LookAt Function

 Previously, command gluLookAt to position camera

 gluLookAt deprecated!!

 Homegrown mat4 method LookAt() in mat.h

 Sets camera position, transforms object distances to
camera frame

void display(){

………

mat4 mv = LookAt(vec4 eye, vec4 at, vec4 up);

……..

}
Builds 4x4 matrix for positioning, orienting

Camera and puts it into variable mv

The LookAt Function
LookAt(eye, at, up)

Programmer defines:
• eye position
• LookAt point (at) and
• Up vector (Up direction usually (0,1,0))

But Why do we set
Up direction?

Nate Robbins LookAt Demo

What does LookAt do?

 Programmer defines eye, lookAt and Up

 LookAt method:

 Forms new axes (u, v, n) at camera

 Transform objects from world to eye camera frame

World coordinate
Frame

Eye coordinate
Frame

Camera with Arbitrary Orientation
and Position

 Define new axes (u, v, n) at eye
 v points vertically upward,

 n away from the view volume,

 u at right angles to both n and v.

 The camera looks toward -n.

 All vectors are normalized.

World coordinate
Frame (old)

Eye coordinate
Frame (new)

LookAt: Effect of Changing Eye Position
or LookAt Point

 Programmer sets LookAt(eye, at, up)

 If eye, lookAt point changes => u,v,n changes

Viewing Transformation Steps

1. Form camera (u,v,n) frame

2. Transform objects from world frame (Composes matrix
for coordinate transformation)

 Next, let’s form camera (u,v,n) frame

world

uv
n

x

y

z

(0,0,0)
lookAt

(1,0,0)(0,1,0)
(0,0,1)

Constructing U,V,N Camera Frame

 Lookat arguments: LookAt(eye, at, up)

 Known: eye position, LookAt Point, up vector

 Derive: new origin and three basis (u,v,n) vectors

eye

Lookat Point

90
o

Eye Coordinate Frame
 New Origin: eye position (that was easy)

 3 basis vectors:

 one is the normal vector (n) of the viewing plane,

 other two (u and v) span the viewing plane

eye
Lookat Point

n

u
v

world origin Remember u,v,n should
be all unit vectors

n is pointing away from the
world because we use left
hand coordinate system

N = eye – Lookat Point
n = N / | N |

(u,v,n should all be orthogonal)

Eye Coordinate Frame

 How about u and v?

eye
Lookat

n

uv
V_up •We can get u first -

•u is a vector that is perp
to the plane spanned by
N and view up vector (V_up)

U = V_up x n

u = U / | U |

Eye Coordinate Frame

 How about v?

Knowing n and u, getting v
is easy

v = n x u

v is already normalized

eye
Lookat

n

uv
V_up

Eye Coordinate Frame

 Put it all together

Eye space origin: (Eye.x , Eye.y,Eye.z)

Basis vectors:

n = (eye – Lookat) / | eye – Lookat|
u = (V_up x n) / | V_up x n |
v = n x u

eye
Lookat

n

uv
V_up

Step 2: World to Eye Transformation

 Next, use u, v, n to compose LookAt matrix

 Transformation matrix (Mw2e) ?

P’ = Mw2e x P

uv

n

world

x

y

z

P

1. Come up with transformation
sequence that lines up eye frame
with world frame

2. Apply this transform sequence to
point P in reverse order

Eye
frame

World to Eye Transformation

1. Rotate eye frame to “align” it with world frame

2. Translate (-ex, -ey, -ez) to align origin with eye

uv

n

world

x

y

z

(ex,ey,ez)

Rotation: ux uy uz 0
vx vy vz 0
nx ny nz 0
0 0 0 1

Translation: 1 0 0 -ex
0 1 0 -ey
0 0 1 -ez
0 0 0 1

World to Eye Transformation

 Transformation order: apply the transformation to the
object in reverse order - translation first, and then rotate

Mw2e =

uv

n

world
x

y

z

(ex,ey,ez)

ux uy ux 0 1 0 0 -ex
vx vy vz 0 0 1 0 -ey
nx ny nz 0 0 0 1 -ez
0 0 0 1 0 0 0 1

ux uy uz -e . u
vx vy vz -e . v
nx ny nz -e . n
0 0 0 1

=

Note: e.u = ex.ux + ey.uy + ez.uz

e.v = ex.vx + ey.vy + ez.vz

e.n = ex.nx + ey.ny + ez.nz

Rotation Translation

Multiplied together

= lookAt transform

lookAt Implementation (from mat.h)

mat4 LookAt(const vec4& eye, const vec4& at, const vec4& up)

{

vec4 n = normalize(eye - at);

vec4 u = normalize(cross(up,n));

vec4 v = normalize(cross(n,u));

vec4 t = vec4(0.0, 0.0, 0.0, 1.0);

mat4 c = mat4(u, v, n, t);

return c * Translate(-eye);

}

ux uy uz -e . u
vx vy vz -e . v
nx ny nz -e . n
0 0 0 1

Eye space origin: (Eye.x , Eye.y,Eye.z)

Basis vectors:

n = (eye – Lookat) / | eye – Lookat|

u = (V_up x n) / | V_up x n |
v = n x u

References

 Interactive Computer Graphics, Angel and Shreiner,
Chapter 4

 Computer Graphics using OpenGL (3rd edition), Hill
and Kelley

