
Other Camera Controls

 The LookAt function is only for positioning camera

 Other ways to specify camera position/movement

 Yaw, pitch, roll

 Elevation, azimuth, twist

 Direction angles

Flexible Camera Control

 Sometimes, we want camera to move

 Like controlling an airplane’s orientation

 Adopt aviation terms:

 Pitch: nose up-down

 Roll: roll body of plane

 Yaw: move nose side to side

 Similarly, yaw, pitch, roll with a camera

Yaw, Pitch and Roll Applied to Camera

Flexible Camera Control

 Create a camera class

class Camera

private:

Point3 eye;

Vector3 u, v, n;…. etc

 Camera functions to specify pitch, roll, yaw. E.g

cam.slide(1, 0, 2); // slide camera backward 2 and right 1

cam.roll(30); // roll camera 30 degrees

cam.yaw(40); // yaw it 40 degrees

cam.pitch(20); // pitch it 20 degrees

Recall: Final LookAt Matrix

ux uy uz -e . u
vx vy vz -e . v
nx ny nz -e . n
0 0 0 1

• Slide along u, v or n

• Changes eye position

• Changes these components

• Pitch, yaw, roll rotates u, v or n

• Changes u, v or n

slide

roll

Implementing Flexible Camera Control

 Camera class: maintains current (u,v,n) and eye position

class Camera

private:

Point3 eye;

Vector3 u, v, n;…. etc

 User inputs desired roll, pitch, yaw angle or slide

1. Roll, pitch, yaw: calculate modified vector (u’, v’, n’)

2. Slide: Calculate new eye position

3. Update lookAt matrix, Load it into CTM

Example: Camera Slide

 Recall: the axes are unit vectors

 User changes eye by delU, delV or delN

 eye = eye + changes (delU, delV, delN)

 Note: function below combines all slides into one

void camera::slide(float delU, float delV, float delN)

{

eye.x += delU*u.x + delV*v.x + delN*n.x;

eye.y += delU*u.y + delV*v.y + delN*n.y;

eye.z += delU*u.z + delV*v.z + delN*n.z;

setModelViewMatrix();

}

E.g moving camera by D along its u axis = eye + Du

Load Matrix into CTM

void Camera::setModelViewMatrix(void)

{ // load modelview matrix with camera values

mat4 m;

Vector3 eVec(eye.x, eye.y, eye.z);// eye as vector

m[0] = u.x; m[4] = u.y; m[8] = u.z; m[12] = -dot(eVec,u);

m[1] = v.x; m[5] = v.y; m[9] = v.z; m[13] = -dot(eVec,v);

m[2] = n.x; m[6] = n.y; m[10] = n.z; m[14] = -dot(eVec,n);

m[3] = 0; m[7] = 0; m[11] = 0; m[15] = 1.0;

CTM = m; // Finally, load matrix m into CTM Matrix

}

• Slide changes eVec,

• roll, pitch, yaw, change u, v, n

• Call setModelViewMatrix after slide, roll, pitch or yaw

ux uy uz -e . u
vx vy vz -e . v
nx ny nz -e . n
0 0 0 1

Example: Camera Roll

void Camera::roll(float angle)

{ // roll the camera through angle degrees

float cs = cos(3.142/180 * angle);

float sn = sin(3.142/180 * angle);

Vector3 t = u; // remember old u

u.set(cs*t.x – sn*v.x, cs*t.y – sn.v.y, cs*t.z – sn.v.z);

v.set(sn*t.x + cs*v.x, sn*t.y + cs.v.y, sn*t.z + cs.v.z)

setModelViewMatrix();

}

u

v’ v

u’



vuv

vuu

)cos()sin('

)sin()cos('











Computer Graphics (CS 4731)
Lecture 14: Projection (Part I)

Prof Emmanuel Agu

Computer Science Dept.

Worcester Polytechnic Institute (WPI)

Recall: 3D Viewing and View Volume

Previously:

Lookat() to set

camera position

Now:

Set view volume

Recall: Different View Volume Shapes

 Different view volume => different look

 Foreshortening? Near objects bigger

x

y

z

x

y

z

Perspective view volume
(exhibits foreshortening)

Orthogonal view volume
(no foreshortening)

View Volume Parameters

 Need to set view volume parameters

 Projection type: perspective, orthographic, etc.

 Field of view and aspect ratio

 Near and far clipping planes

Field of View

 View volume parameter

 Determines how much of world in picture (vertically)

 Larger field of view = smaller objects drawn

x

y

z

y

z q

field of view
(view angle)

center of projection

Near and Far Clipping Planes

 Only objects between near and far planes drawn

x

y

z

Near plane Far plane

Viewing Frustrum

 Near plane + far plane + field of view = Viewing Frustum

 Objects outside the frustum are clipped

x

y

z

Near plane Far plane

Viewing Frustum

Setting up View Volume/Projection Type

 Previous OpenGL projection commands deprecated!!

 Perspective view volume/projection:

 gluPerspective(fovy, aspect, near, far) or

 glFrustum(left, right, bottom, top, near, far)

 Orthographic:

 glOrtho(left, right, bottom, top, near, far)

 Useful functions, so we implement similar in mat.h:

 Perspective(fovy, aspect, near, far) or

 Frustum(left, right, bottom, top, near, far)

 Ortho(left, right, bottom, top, near, far)

x

y
z

x

y
z

What are these

arguments? Next!

Perspective(fovy, aspect, near, far)

 Aspect ratio used to calculate window width

x

y

z

y

z
fovy

near farAspect = w / h

w

h

Near plane

Frustum(left, right, bottom, top, near, far)

 Can use Frustrum() in place of Perspective()

 Same view volume shape, different arguments

x

y

z

left

right
bottom

top

near far

near and far measured from camera

Ortho(left, right, bottom, top, near, far)

 For orthographic projection

x

y

z

left

rightbottom

top

near
far

near and far measured from camera

Example Usage:
Setting View Volume/Projection Type

void display()

{ // clear screen

glClear(GL_COLOR_BUFFER_BIT);

………..

// Set up camera position

LookAt(0,0,1,0,0,0,0,1,0);

………..

// set up perspective transformation

Perspective(fovy, aspect, near, far);

………..

// draw something

display_all(); // your display routine

}

eye at up

Demo

 Nate Robbins demo on projection

Perspective Projection

 After setting view volume, then projection
transformation

 Projection?

 Classic: Converts 3D object to corresponding 2D on screen

 How? Draw line from object to projection center

 Calculate where each intersects projection plane

projection plane

camera

 How? Draw parallel lines from each object vertex

 The projection center is at infinite

 In short, use (x,y) coordinates, just drop z coordinates

Orthographic Projection

x

y

z

Triangle

In 3D
Projection of

Triangle in 2D

 Keeps (x,y) coordintates for drawing, drops z

 We may need z. Why?

The Problem with Classic Projection

x

y

z

VertexTriangle

In 3D
Projection of

Triangle in 2D

xp = x

yp = y

zp = 0 Classic Projection
Loses z value

Normalization: Keeps z Value

 Most graphics systems use view normalization

 Normalization: convert all other projection types to
orthogonal projections with the default view volume

x

y

z

x

y

z

Default view volume

Clipping against it

Perspective transform
matrix

Ortho transform
matrix

Computer Graphics (CS 4731)
Lecture 15: Projection (Part 2): Derivation

Prof Emmanuel Agu

Computer Science Dept.

Worcester Polytechnic Institute (WPI)

Parallel Projection

 normalization  find 4x4 matrix to transform user-specified
view volume to canonical view volume (cube)

glOrtho(left, right, bottom, top,near, far)

Canonical
View Volume

User-specified
View Volume

Parallel Projection: Ortho

 Parallel projection: 2 parts

1. Translation: centers view volume at origin

Parallel Projection: Ortho

2. Scaling: reduces user-selected cuboid to canonical
cube (dimension 2, centered at origin)

Parallel Projection: Ortho

 Translation lines up midpoints: E.g. midpoint of x = (right + left)/2

 Thus translation factors:

-(right + left)/2, -(top + bottom)/2, -(far+near)/2

 Translation matrix:



























1000

2/)(100

2/)(010

2/)(001

nearfar

bottomtop

leftright

Parallel Projection: Ortho

 Scaling factor: ratio of ortho view volume to cube dimensions

 Scaling factors: 2/(right - left), 2/(top - bottom), 2/(far - near)

 Scaling Matrix M2:

































1000

0
2

00

00
2

0

000
2

nearfar

bottomtop

leftright

Parallel Projection: Ortho

Concatenating Translation x Scaling, we get Ortho Projection matrix

X

































1000

0
2

00

00
2

0

000
2

nearfar

bottomtop

leftright



























1000

2/)(100

2/)(010

2/)(001

nearfar

bottomtop

leftright















































1000

2
00

0
2

0

00
2

nearfar

nearfar

farnear

bottomtop

bottomtop

bottomtop

leftright

leftright

leftright

P = ST =

Final Ortho Projection

 Set z =0

 Equivalent to the homogeneous coordinate
transformation

 Hence, general orthogonal projection in 4D is



















1000

0000

0010

0001

Morth =

P = MorthST

Perspective Transformation

 We want to transform viewing frustum
volume into canonical view volume

(-1, -1, 1)

(1, 1, -1)

Canonical View Volume

x

y

z

Perspective Projection Matrix

glFrustum(left, right, bottom, top, N, F) N = near plane, F = far plane
















































0100

2)(
00

0
2

0

00
minmax

2

NF

FN

NF

NF

bottomtop

bottomtop

bottomtop

N

leftright

leftright

xx

N

Final Perspective
Transform Matrix

Derivation skipped!

Geometric Nature of Perspective
Transform

a) Lines through eye map into lines parallel to z axis after transform

b) Lines perpendicular to z axis map to lines perp to z axis after transform

Implementation

 Set modelview and projection matrices in application program

 Pass matrices to shader

void display(){

.....

model_view = LookAt(eye, at, up);

projection = Ortho(left, right, bottom,top, near, far);

// pass model_view and projection matrices to shader

glUniformMatrix4fv(matrix_loc, 1, GL_TRUE, model_view);

glUniformMatrix4fv(projection_loc, 1, GL_TRUE, projection);

.....

}

Build 4x4 projection matrix

Implementation

 And the corresponding shader

in vec4 vPosition;

in vec4 vColor;

Out vec4 color;

uniform mat4 model_view;

Uniform mat4 projection;

void main()

{

gl_Position = projection*model_view*vPosition;

color = vColor;

}

References

 Interactive Computer Graphics (6th edition), Angel and
Shreiner

 Computer Graphics using OpenGL (3rd edition), Hill and Kelley

