Recall: Indexing into Cube Map :

eCompute R =2(N-V)N-V

eObject at origin X Q
eUse largest magnitude component v R
of R to determine face of cube

eOther 2 components give
texture coordinates

Cube Map Layout

+2

+¥Y

Cube Map Texture Lookup:
Given an (s,t,p) direction vector , what (r,g,b) does that correspond to?

* Let L be the texture coordinate
of (s, t, and p) with the largest
maghnitude

» L determines which of the 6 2D
texture “walls” is being hit by the
vector (-X in this case)

* The texture coordinates in that
texture are the remaining two
texture coordinates divided by L:
(a/L,b/L)

Built-in GLSL functions

" 4

vec3 ReflectVector = reflect(vec3 eyeDir, vec3 normal);

vec3 RefractVector = refract(vec3 eyeDir, vec3 normal, float Eta);

-4
¥ +2Z DN :.
Example
-X +Y +X -y
R=(-4,3,-1) T

Same as R=(-1, 0.75, -0.25)
Use face x=-1and y=0.75,z=-0.25

Not quite right since cube defined by x,y,z=%1
rather than [0, 1] range needed for texture
coordinates

Remap by from [-1,1] to [0,1] range
s=%2+ry,t=)2+%12
Hence, s =0.875,t=0.375

Sphere Environment Map

e Cube can be replaced by a sphere (sphere map)

Sphere Mapping

e Original environmental mapping technique
e Proposed by Blinn and Newell

e Uses lines of longitude and latitude to map
parametric variables to texture coordinates

e OpenGL supports sphere mapping

e Requires a circular texture map equivalent to an
image taken with a fisheye lens

Sphere Map :

s A sphere maps is basically a photograph of a reflective
sphere in an environment

Paul DeBevec, www.debevec.org

Sphere map

e example

Sphere map Sphere map
(texture) applied on torus

Capturing a Sphere Map :

Matt Loper, MERL

Normal Mapping o

e Store normals in texture

e Very useful for making low-resolution geometry look
like it’'s much more detailed

?

)

\f 4 v

e
o e O

R
NS

simplified mesh
and normal mapping
500 triangles

original mesh simplified mesh
4M triangles 500 triangles

Computer Graphics (CS 4731)
Lecture 19: Shadows and Fog

Prof Emmanuel Agu

Computer Science Dept.
Worcester Polytechnic Institute (WPI)

Introduction to Shadows

e Shadows give information on relative positions of objects

Use ambient +
diffuse + specular
components

Use just ambient
component

Introduction to Shadows

e Two popular shadow rendering methods:
Shadows as texture (projection)
Shadow buffer

e Third method used in ray-tracing (covered in grad
class)

Projective Shadows :

e Oldest method: Used in early flight simulators
e Projection of polygon is polygon called shadow polygon

(1 y1 Z)

Actual polygon

= x_—~ Shadow polygon

Projective Shadows

e Works for flat surfaces illuminated by point light
e For each face, project vertices V to find V’ of shadow polygon
e Object shadow = union of projections of faces

\n

Projective Shadow Algorithm

e Project light-object edges onto plane

e Algorithm:

First, draw ground plane/scene using
specular+diffuse+ambient components

Then, draw shadow projections (face by face) using only
ambient component

Projective Shadows for Polygon :

1. Iflightis at (x, vy, z,)
2. Vertex at (x, v, z)

3. Would like to calculate shadow polygon vertex V projected
onto ground at (x,, 0, z,)

(x1, y1. z)

L

(x,y,2)

> X
(Xp:0,2p)

Ground plane:y =0

Projective Shadows for Polygon :

e If we move original polygon so that light source is at origin

e Matrix M projects a vertex V to give y
A

its projection V' in shadow polygon

3

Il
© O O -
ro ko
© r O O
©O O o o

|
<

Building Shadow Projection Matrix

1. Translate source to origin with T(-x,, -y, -z,)
2. Perspective projection
3. Translate back by T(x, vy,,)

100 x|t % % %100 —x

M:°10y'8(1)23010‘y'

001 2 : 001 -3

_0001_0W00_000 1
| | _

\ Final matrix that projects
Vertex V onto V' in shadow polygon

(Y X)
'YX
o0
O

Code snippets?

e Set up projection matrix in OpenGL application

float light[3]; // location of light

mat4d m; // shadow projection matrix initially identity

M[3][1] -1.0/1light[1];

<

Il
o O O B
o O O
O O o o

Projective Shadow Code

e Set up object (e.g a square) to be drawn

point4 square[4] = {vec4(-0.5, 0.5, -0.5, 1.0}
{vecd4(-0.5, 0.5, -0.5, 1.0}
{vecd4(-0.5, 0.5, -0.5, 1.0}
{vecd4(-0.5, 0.5, -0.5, 1.0}

e Copy square to VBO
e Pass modelview, projection matrices to vertex shader

000
0000
| X X N
o000
? o0
What next: :
e Next, we load model _view as usual then draw
original polygon
e Then load shadow projection matrix, change color to
black, re-render polygon
(X1, yi. z1)
Y
A
1. Load modelview
draw polygon as usual
\ » x 2. Modify modelview with

Shadow projection matrix
Re-render as black (or ambient)

Shadow projection Display() Function | ¢

void display()

{

mat4d mm;
// clear the window
glClear (GL COLOR BUFFER BIT | GL DEPTH BUFFER BIT) ;

// render red square (original square) using modelview
// matrix as usual (previously set up)
glUniformd4fv(color loc, 1, red);

glDrawArrays (GL_TRIANGLE STRIP, 0, 4);

Shadow projection Display() Function

// modify modelview matrix to project square
// and send modified model view matrix to shader
mm = model view
* Translate(light[0], light[1l], light[2]
*m
* Translate(-1light[0], -light[1],
glUniformMatrix4fv (matrix loc, 1, GL TR

-light[2]);

//and re-render square as

glUniform4fv(color loc, 1, black);
glDrawArrays (GL_TRIANGLE_STRIP , 0, 4);

glutSwapBuffers() ; Loo x]t 0 0
1
ooy 0 1 0
“loo1 4|° ? .
0 — 0
000 1 -
LY

o O O O

o O — O

o O O
|
<

Shadow Buffer Approach :

e Uses second depth buffer called shadow buffer
e Pros: not limited to plane surfaces

e Cons: needs lots of memory
e Depth buffer?

OpenGL Depth Buffer (Z Buffer)

e Depth: While drawing objects, depth buffer stores
distance of each polygon from viewer

e Why? If multiple polygons overlap a pixel, only
closest one polygon is drawn
Depth

E— Z=O.5‘4

10 | 1.0 1.0 | 1.0 | o5
1.0 | 03 | 03] 1.0 T

“ | 1.0 ‘
. 1.0 eye

Setting up OpenGL Depth Buffer .

e Note: You did this in order to draw solid cube, meshes

1. glutInitDisplayMode @T_DE@ | GLUT RGB)
instructs openGL to create depth buffer

2. glEnable (GL_DEPTH TESTD enables depth testing

3. glClear (GL COLOR BUFFER BIT |
<GL_DEPTH BUFFER BI

Initializes depth buffer every time we draw a new picture

Shadow Buffer Theory :

e Along each path from light
e Only closest object is lit

e Other objects on that path in shadow
e Shadow buffer stores closest object on each path

source shadow
buffer

s

In shadow

Shadow Buffer Approach

e Rendering in two stages:
e Loading shadow buffer
e Render the scene

Loading Shadow Buffer

e Initialize each elementto 1.0

e Position a camera at light source

e Rasterize each face in scene updating closest object
e Shadow buffer tracks smallest depth on each path

source shadow
buffer

-

‘ J B < screen and
A ” depth buffer

Shadow Buffer (Rendering Scene)

e Render scene using camera as usual

e While rendering a pixel find:
pseudo-depth D from light source to P
Index location [i][j] in shadow buffer, to be tested
Value d[i][j] stored in shadow buffer

e If d[i][j] < D (other object on this path closer to light)
point P is in shadow -
lighting = ambient | i L -
e Otherwise, not in shadow 7 A
DIi][] D/'

Lighting = amb + diffuse + specular

In shadow

Loading Shadow Buffer

e Shadow buffer calculation is independent of eye
position

e |n animations, shadow buffer loaded once
e If eye moves, no need for recalculation
e If objects move, recalculation required

source shadow
buffer

[o
-

/.J B <, ,screen and
,/ depth buffer

Soft Shadows °

e Point light sources => simple hard shadows, unrealistic
e Extended light sources => more realistic
e Shadow has two parts:

e Umbra (Inner part) => no light

e Penumbra (outer part) => some light

Fog example °

e Fog is atmospheric effect
e Better realism, helps determine distances

Fog .

e Fog was part of OpenGL fixed function pipeline

e Programming fixed function fog

e Parameters: Choose fog color, fog model
e Enable: Turniton

e Fixed function fog deprecated!!

e Shaders can implement even better fog

e Shaders implementation: fog applied in fragment
shader just before display

Rendering Fog

e Mix some color of fog: C; + color of surface: C,

c,=1c, +(1-"f)c, T e[0]]

o If f=0.25, output color = 25% fog + 75% surface color

e f computed as function of distance z
e 3 ways: linear, exponential, exponential-squared
e Linear:

Fog Shader Fragment Shader Example

f— Zend _Zp

/ —7Z
float dist = abs(Position.z);
Float fogFactor = (Fog.maxDist - dist)/

Fog.maxDist - Fog.minDist) ;

end start

fogFactor = clamp(fogFactor, 0.0, 1.0);

vec3 shadeColor = ambient + diffuse + specular
vec3 color = mix (Fog.color, shadeColor, fogFactor) ;

FragColor = vec4(color, 1.0);

c,=fc, +(1—-T)c,

Fog oo

: f — —dszp
e Exponential =€
: —(d¢z,)?
e Squared exponential f =e (rzp)

e Exponential derived from Beer’s law

e Beer’s law: intensity of outgoing light diminishes
exponentially with distance

fog factor equations

I e | | |
L s -
N T, -

= ST linear
g 08 | / exp2 0.33 m
o Y ﬁ'---,“_ / EKp'ZUfif)
— ~
c 06 sl i n
= . . e
[
8 04
&
i
z 02}
0 I] |] _ -

0 1 2 3 4 5
relative distance

Fog Optimizations e

e fvalues for different depths (z,)can be pre-computed
and stored in a table on GPU

e Distances used in f calculations are planar

e Can also use Euclidean distance from viewer or radial
distance to create radial fog

viewer viewer viewer

References

e Interactive Computer Graphics (6" edition), Angel
and Shreiner

e Computer Graphics using OpenGL (3" edition), Hill
and Kelley

e Real Time Rendering by Akenine-Moller, Haines and
Hoffman

