
Recall: Liang-Barsky 3D Clipping

 Goal: Clip object edge-by-edge against Canonical View

volume (CVV)

 Problem:
 2 end-points of edge: A = (Ax, Ay, Az, Aw) and C = (Cx, Cy, Cz, Cw)

 If edge intersects with CVV, compute intersection point I =(Ix,Iy,Iz,Iw)

Recall: Determining if point is inside CVV

x = -1 x = 1

 Problem: Determine if point

(x,y,z) is inside or outside CVV?

Point (x,y,z) is inside CVV if

(-1 <= x <= 1)

and (-1 <= y <= 1)
and (-1 <= z <= 1)

else point is outside CVV

CVV == 6 infinite planes (x=-1,1; y=-1,1; z=-1,1)

y= -1

y = 1

Recall: Determining if point is inside CVV

 If point specified as (x,y,z,w)

- Test (x/w, y/w , z/w)!

Point (x/w, y/w, z/w) is inside CVV

if (-1 <= x/w <= 1)

and (-1 <= y/w <= 1)
and (-1 <= z/w <= 1)

else point is outside CVV

x /w = 1

y/w = -1

y/w = 1

x/w = -1

Recall: Modify Inside/Outside Tests Slightly

Our test: (-1 < x/w < 1)

Point (x,y,z,w) inside plane x = 1 if

x/w < 1

=> w – x > 0

Point (x,y,z,w) inside plane x = -1 if

-1 < x/w

=> w + x > 0

x /w = 1

y/w = -1

y/w = 1

x/w = -1

Recall: Numerical Example: Inside/Outside
CVV Test

 Point (x,y,z,w) is

 inside plane x=-1 if w+x > 0

 inside plane x=1 if w – x > 0

 Example Point (0.5, 0.2, 0.7) inside planes (x = -1,1) because - 1 <= 0.5 <= 1

 If w = 10, (0.5, 0.2, 0.7) = (5, 2, 7, 10)

 Can either divide by w then test: – 1 <= 5/10 <= 1 OR

To test if inside x = - 1, w + x = 10 + 5 = 15 > 0

To test if inside x = 1, w - x = 10 - 5 = 5 > 0

-1 1

x/w

Recall: 3D Clipping

 Do same for y, z to form boundary coordinates for 6 planes as:

Boundary
coordinate (BC)

Homogenous
coordinate

Clip plane Example

(5,2,7,10)

BC0 w+x x=-1 15

BC1 w-x x=1 5

BC2 w+y y=-1 12

BC3 w-y y=1 8

BC4 w+z z=-1 17

BC5 w-z z=1 3

Consider line that goes from point A to C

 Trivial accept: 12 BCs (6 for pt. A, 6 for pt. C) > 0

 Trivial reject: Both endpoints outside (-ve) for same plane

Edges as Parametric Equations

 Implicit form

 Parametric forms:

 points specified based on single parameter value

 Typical parameter: time t

 Represent each edge parametrically as A + (C – A)t

 at time t=0, point at A

 at time t=1, point at C

0),(yxF

tPPPtP *)()(010  10  t

Inside/outside?

 Test A, C against 6 walls (x=-1,1; y=-1,1; z=-1,1)

 There is an intersection if BCs have opposite signs. i.e. if either

 A is outside (< 0), C is inside (> 0) or

 A inside (> 0) , C outside (< 0)

 Edge intersects with plane at some t_hit between [0,1]

A

Ct_hit

C

A
t_hit

t = 0

t = 1
t = 0

t = 1

Calculating hit time (t_hit)

 How to calculate t_hit?

 Represent an edge t as:

 E.g. If x = 1,

 Solving for t above,

1
)(

)(






tAwCwAw

tAxCxAx

)()(CxCwAxAw

AxAw
t






))((,)((,)((,)((()(tAwCwAwtAzCzAztAyCyAytAxCxAxtEdge 

Inside/outside?

 t_hit can be “entering (t_in) ” or ”leaving (t_out)”

 Define: “entering” if A outside, C inside

 Why? As t goes [0-1], edge goes from outside (at A) to inside (at C)

 Define “leaving” if A inside, C outside

 Why? As t goes [0-1], edge goes from inside (at A) to outside (at C)

A

Ct_in

C

A
t_out

Entering

t = 0

t = 1 t = 0

t = 1

Leaving

Candidate Interval

 Candidate Interval (CI): time interval during which edge might still
be inside CVV. i.e. CI = t_in to t_out

 Initialize CI to [0,1]

 For each of 6 planes, calculate t_in or t_out, shrink CI

 Conversely: values of t outside CI = edge is outside CVV

0 1

t

t_in t_out

CI

Shortening Candidate Interval

 Algorithm:

 Test for trivial accept/reject (stop if either occurs)

 Set CI to [0,1]

 For each of 6 planes:

 Find hit time t_hit

 If t_in, new t_in = max(t_in,t_hit)

 If t_out, new t_out = min(t_out, t_hit)

 If t_in > t_out => exit (no valid intersections)

Note: seeking smallest valid CI without t_in crossing t_out

0 1

t
t_in t_out

CI

Example: Chop step by Step against 6 planes

 Initially

 Chop against each of 6 planes

A

C

t = 0

t = 1

t_in = 0, t_out = 1

Candidate Interval (CI) = [0 to 1]

A

C

t = 0

t_out = 0.74 Plane y = 1

t_in = 0, t_out = 0.74

Candidate Interval (CI) = [0 to 0.74] Why t_out?

Example: Chop step by Step against 6 planes

 Initially

 Then

A

C

t = 0

t_out = 0.74

t_in = 0, t_out = 0.74

Candidate Interval (CI) = [0 to 0.74]

A

C

t_out = 0.74

t_in = 0.36, t_out = 0.74

Candidate Interval (CI) CI = [0.36 to 0.74]

t_in= 0.36

Why t_in?

Plane x = -1

Calculate choppped A and C

 If valid t_in, t_out, calculate adjusted edge endpoints A, C as

 A_chop = A + t_in (C – A) (calculate for Ax,Ay, Az)

 C_chop = A + t_out (C – A) (calculate for Cx,Cy,Cz)

0 1

t

t_in t_out

CI
A_chop C_chop

3D Clipping Implementation

 Function clipEdge()

 Input: two points A and C (in homogenous coordinates)

 Output:

 0, if AC lies completely outside CVV

 1, completely inside CVV

 Returns clipped A and C otherwise

 Calculate 6 BCs (w-x, w+x, etc) for A, 6 for C

ClipEdge ()

0

1

A_chop, C_chop

A

C

Store BCs as Outcodes

 Use outcodes to track in/out

 Number walls x = +1, -1; y = +1, -1, and z = +1, -1 as 0 to 5

 Bit i of A’s outcode = 1 if A is outside ith wall

 1 otherwise

 Example: outcode for point outside walls 1, 2, 5

0 1 2 3 4 5

0 1 1 0 0 1

Wall no.

OutCode

Trivial Accept/Reject using Outcodes

 Trivial accept: inside (not outside) any walls

 Trivial reject: point outside same wall. Example Both A and C outside wall 1

0 1 2 3 4 5

0 0 0 0 0 0

0 0 0 0 0 0

Wall no.

A Outcode

C OutCode

0 1 2 3 4 5

0 1 0 0 1 0

0 1 1 0 0 0

Wall no.

A Outcode

C OutCode

Logical bitwise test: A | C == 0

Logical bitwise test: A & C != 0

3D Clipping Implementation

 Compute BCs for A,C store as outcodes

 Test A, C outcodes for trivial accept, trivial reject

 If not trivial accept/reject, for each wall:

 Compute tHit

 Update t_in, t_out

 If t_in > t_out, early exit

3D Clipping Pseudocode

int clipEdge(Point4& A, Point4& C)

{

double tIn = 0.0, tOut = 1.0, tHit;

double aBC[6], cBC[6];

int aOutcode = 0, cOutcode = 0;

…..find BCs for A and C

…..form outcodes for A and C

if((aOutCode & cOutcode) != 0) // trivial reject

return 0;

if((aOutCode | cOutcode) == 0) // trivial accept

return 1;

3D Clipping Pseudocode

for(i=0;i<6;i++) // clip against each plane

{

if(cBC[i] < 0) // C is outside wall i (exit so tOut)

{

tHit = aBC[i]/(aBC[i] – cBC[I]); // calculate tHit

tOut = MIN(tOut, tHit);

}

else if(aBC[i] < 0) // A is outside wall I (enters so tIn)

{

tHit = aBC[i]/(aBC[i] – cBC[i]); // calculate tHit

tIn = MAX(tIn, tHit);

}

if(tIn > tOut) return 0; // CI is empty: early out

}

)()(CxCwAxAw

AxAw
t






3D Clipping Pseudocode

Point4 tmp; // stores homogeneous coordinates

If(aOutcode != 0) // A is outside: tIn has changed. Calculate A_chop

{

tmp.x = A.x + tIn * (C.x – A.x);

// do same for y, z, and w components

}

If(cOutcode != 0) // C is outside: tOut has changed. Calculate C_chop

{

C.x = A.x + tOut * (C.x – A.x);

// do same for y, z and w components

}

A = tmp;

Return 1; // some of the edges lie inside CVV

}

Polygon Clipping

 Not as simple as line segment clipping

 Clipping a line segment yields at most one line segment

 Clipping a concave polygon can yield multiple polygons

 Clipping a convex polygon can yield at most one
other polygon

23

Clipping Polygons

 Need more sophisticated algorithms to handle
polygons:

 Sutherland-Hodgman: clip any given polygon against a
convex clip polygon (or window)

 Weiler-Atherton: Both clipped polygon and clip
polygon (or window) can be concave

Tessellation and Convexity

 One strategy is to replace nonconvex (concave)
polygons with a set of triangular polygons (a
tessellation)

 Also makes fill easier

25

Computer Graphics (CS 4731)
Lecture 21: Viewport Transformation

& Hidden Surface Removal

Prof Emmanuel Agu

Computer Science Dept.

Worcester Polytechnic Institute (WPI)

Viewport Transformation

 After clipping, do viewport transformation

User implements in

Vertex shader

Manufacturer

implements

In hardware

Viewport Transformation

 Maps CVV (x, y) -> screen (x, y) coordinates

x

y

width

1-1 x

y

-1

1

height

Canonical
View volume

Screen
coordinates

glViewport(x,y, width, height)

(x,y)

Viewport Transformation: What of z?

 Also maps CVV z (pseudo-depth) from [-1,1] to [0,1]

 [0,1] pseudo-depth stored in depth buffer,

 Used for Depth testing (Hidden Surface Removal)

x

y

z

-1 0
1

Recall: OpenGL Stages

 After projection, several stages before objects drawn to screen

 These stages are NOT programmable

Transform Projection
Primitive

Assembly Clipping

Rasterization
Hidden

Surface

Removal

Vertex shader: programmable In hardware: NOT programmable

Hidden surface Removal

 Drawing polygonal faces on screen consumes CPU cycles

 User cannot see every surface in scene

 To save time, draw only surfaces we see

 Surfaces we cannot see and elimination methods?

1. Occluded surfaces: hidden

surface removal (visibility)

Back face

2. Back faces: back face culling

Hidden surface Removal

 Surfaces we cannot see and elimination methods:
 3. Faces outside view volume: viewing frustrum culling



Classes of HSR techniques:

 Object space techniques: applied before rasterization

 Image space techniques: applied after vertices have been
rasterized

Clipped

Not Clipped

Visibility (hidden surface removal)

 Overlapping opaque polygons

 Correct visibility? Draw only the closest polygon

 (remove the other hidden surfaces)

wrong visibility Correct visibility

Image Space Approach

 Start from pixel, work backwards into the scene

 Through each pixel, (nm for an n x m frame buffer)
find closest of k polygons

 Complexity O(nmk)

 Examples:

 Ray tracing

 z-buffer : OpenGL

OpenGL - Image Space Approach

 Paint pixel with color of closest object

for (each pixel in image) {

determine the object closest to the pixel

draw the pixel using the object’s color

}

Z buffer Illustration

eye

Z = 0.3

Z = 0.5

Top View

Correct Final image

Z buffer Illustration

1.0 1.0 1.0 1.0

Step 1: Initialize the depth buffer

1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0

Largest possible

z values is 1.0

Z buffer Illustration

Step 2: Draw blue polygon
(order does not affect final result)

eye

Z = 0.3

Z = 0.5

1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0

0.5 0.5 1.0 1.0

0.5 0.5 1.0 1.0

1. Determine group of pixels corresponding to blue polygon

2. Figure out z value of blue polygon for each covered pixel (0.5)

3. For each covered pixel, compare polygon z to current depth buffer z

1. z = 0.5 is less than 1.0 so smallest z so far = 0.5, color = blue

Z buffer Illustration

Step 3: Draw the yellow polygon

eye

Z = 0.3

Z = 0.5

1.0 0.3 0.3 1.0

0.5 0.3 0.3 1.0

0.5 0.5 1.0 1.0

z-buffer drawback: wastes resources drawing and redrawing faces

1.0 1.0 1.0 1.0

1. Determine group of pixels corresponding to yellow polygon

2. Figure out z value of yellow polygon for each covered pixel (0.3)

3. For each covered pixel, z = 0.3 becomes minimum, color = yellow

OpenGL HSR Commands

 3 main commands to do HSR

 glutInitDisplayMode(GLUT_DEPTH | GLUT_RGB)

instructs openGL to create depth buffer

 glEnable(GL_DEPTH_TEST) enables depth testing

 glClear(GL_COLOR_BUFFER_BIT |

GL_DEPTH_BUFFER_BIT) initializes depth buffer every
time we draw a new picture

Z-buffer Algorithm

 Initialize every pixel’s z value to 1.0

 rasterize every polygon

 For each pixel in polygon, find its z value (interpolate)

 Track smallest z value so far through each pixel

 As we rasterize polygon, for each pixel in polygon

 If polygon’s z through this pixel < current min z through pixel

 Paint pixel with polygon’s color

Find depth (z) of every
polygon at each pixel

Z (depth) Buffer Algorithm

For each polygon {

for each pixel (x,y) in polygon area {

if (z_polygon_pixel(x,y) < depth_buffer(x,y)) {

depth_buffer(x,y) = z_polygon_pixel(x,y);

color_buffer(x,y) = polygon color at (x,y)
}

}
}

Note: know depths at vertices. Interpolate for interior
z_polygon_pixel(x, y) depths

Depth of polygon being
rasterized at pixel (x, y)

Largest depth seen so far
Through pixel (x, y)

Perspective Transformation Issue:
Z-Buffer Depth Compression

 Pseudodepth calculation: Recall we chose parameters (a and b)
to map z from range [near, far] to pseudodepth range[-1,1]

(-1, -1, 1)

(1, 1, -1)

Canonical
View Volume

x

y

z




































































1

0100

2)(
00

0
2

0

00
minmax

2

z

y

x

NF

FN

NF

NF

bottomtop

bottomtop

bottomtop

N

leftright

leftright

xx

N

These values map z values of original

view volume to [-1, 1] range

Z-Buffer Depth Compression

 This mapping is almost linear close to eye

 Non-linear further from eye, approaches asymptote

 Also limited number of bits

 Thus, two z values close to far plane may map to
same pseudodepth: Errors!!

Mapped z

-Pz

1

-1

N

F

Pz
baPz




NF
NFa




NF
FNb


 2

Actual z

References

 Angel and Shreiner, Interactive Computer Graphics,
6th edition

 Hill and Kelley, Computer Graphics using OpenGL, 3rd

edition, Chapter 9

