Recall: Line drawing algorithm

e Programmer specifies (x,y) of end pixels

e Need algorithm to determine pixels on line path

NWPRUTONO®

(3121

0123 456789 101112

Line: (3,2) -> (9,6)

Which intermediate
pixels to turn on?

Bresenham’s Line-Drawing Algorithm |

e Problem: Given endpoints (Ax, Ay) and (Bx, By) of line,
determine intervening pixels

e First make two simplifying assumptions (remove later):
e (Ax < Bx) and

e (O<mx<1)

e Define
, (Bx,By)
e Width W = Bx — Ax
e Height H =By - Ay H

(Ax,Ay)

Bresenham’s Line-Drawing Algorithm

(Bx,By)

H

wW
(Ax,Ay)

e Based on assumptions (Ax < Bx) and (0 <m < 1)
W, H are +ve
H<W

e Increment x by +1, y incr by +1 or stays same

e Midpoint algorithm determines which happens

Bresenham’s Line-Drawing Algorithm |

What Pixels to turn on or off?

Consider pixel midpoint M(Mx, My) = (x+ 1, y + %)
Build equation of actual line, compare to midpoint

(x1,y1)
/

Case a: If midpoint (red dot) is below line,

[] B -
/4/u/ Shade upper pixel, (x +1,y +1)
/D«— (x1,y1)

~._Case b: If midpoint (red dot) is above line,

Shade lower pixel, (x + 1, y)

Build Equation of the Line

(Bx,By)
e Using similar triangles: (x,y H
y-Ay _H
Xx—AX W (Ax,Ay) W

H(x — Ax) = W(y — Ay)
-W(y—Ay)+H(x—Ax) =0

e Above is equation of line from (Ax, Ay) to (Bx, By)
e Thus, any point (x,y) that lies on ideal line makes eqgn =0
e Double expression (to avoid floats later), and call it F(x,y)

F(x,y) = -2W(y — Ay) + 2H(x — Ax)

Bresenham’s Line-Drawing Algorithm |

e So, F(x,y) =-2W(y — Ay) + 2H(x — Ax)

e Algorithm, If:
e F(x,vy) <0, (x,y) above line
e F(x,y)>0, (x,y) below line

e Hint: F(x,y)=0isonline

e Increase y keeping x constant, F(x, y) becomes more
negative

Bresenham’s Line-Drawing Algorithm | @

e Example: to find line segment between (3, 7) and (9, 11)

F(x,y) = -2W(y — Ay) + 2H(x — Ax)
= (-12)(y—7) + (8)(x—3)

e For pointson line. E.g. (7, 29/3), F(x,y) =0

e A=(4,4)lies below line since F =44 (5,9)
e B=(5,9)lies above line since F = -8 .
[]
[]

(4,4)

Bresenham’s Line-Drawing Algorithm | @

What Pixels to turn on or off?

Consider pixel midpoint M(Mx, My) = (x0 + 1, YO + }5)

(x1,y1)
/

/

Case a: If M below actual line

] BT FMx, My) <0
A" shade upper pixel (x + 1,y + 1)
P
P (Mx,My]

~J Case b: If M above actual line
F(Mx,My) > 0

(x0, y0) shade lower pixel (x + 1, y)

Can compute F(x,y) incrementally

Initially, midpoint M = (Ax + 1, Ay + %)
F(Mx, My) = -2W(y — Ay) + 2H(x — Ax)
i.e. F(Ax+1,Ay+%)=2H-W
Can compute F(x,y) for next midpoint incrementally
If we increment to (x + 1, y), compute new F(Mx,My)

F(Mx, My) += 2H
(AX + 2, Ay + %)
i.e. F(Ax + 2, Ay + %) - H g V
-F(Ax + 1, Ay + %) !<\// £
<
= 2H = = \\\\\
(AX + 1, Ay + ¥2)

Can compute F(x,y) incrementally |

If we incrementto (x+1,y + 1)
F(Mx, My) += 2(H - W)

i.e. F(Ax+2, Ay +3/2) -F(Ax+ 1, Ay + %) =2(H-W) //
pd

(Ax + 2, Ay + 3/2)

pd

/

g

N
(Ax + 1, Ay + %)

Bresenham’s Line-Drawing Algorithm

Bresenham(IntPoint a, InPoint b)

{// restriction: a.x<b.xand0<H/W< 1
inty=a.y, W=b.x—a.x, H=hb.y-a.y;
intF=2*H-W; //current error term
for(intx =a.x; x<=b.x; x++)

{
setpixel at (x, y); // to desired color value
if F<0 // y stays same
F=F+2H;
else{
Y++, F=F +2(H-W) //incrementy
}
}

e Recall: Fis equation of line

Bresenham’s Line-Drawing Algorithm

e Final words: we developed algorithm with restrictions
0<m<1and Ax < Bx

e Can add code to remove restrictions
When Ax > Bx (swap and draw)
Lines having m > 1 (interchange x with y)
Lines with m < 0 (step x++, decrement y not incr)

Horizontal and vertical lines (pretest a.x = b.x and skip
tests)

Computer Graphics
CS 4731 Lecture 23
Polygon Filling & Antialiasing

Prof Emmanuel Agu

Computer Science Dept.
Worcester Polytechnic Institute (WPI)

Defining and Filling Regions of Pixels |

e Methods of defining region
e Pixel-defined: specifies pixels in color or geometric
range

e Symbolic: provides property pixels in region must
have
e Examples of symbolic:

Closeness to some pixel
Within circle of radius R

Within a specified polygon

N o

Pixel-Defined Regions

e Definition: Region R is the set of all pixels having
color C that are connected to a given pixel S

e 4-adjacent: pixels that lie next to each other
horizontally or vertically, NOT diagonally

e 8-adjacent: pixels that lie next to each other
horizontally, vertically OR diagonally

e 4-connected: if there is unbroken path of 4-adjacent
pixels connecting them

e 8-connected: unbroken path of 8-adjacent pixels
connecting them

sese
o000

Recursive Flood-Fill Algorithm e

e Recursive algorithm

e Starts from initial pixel of color, intColoxr

e Recursively set 4-connected neighbors to newColoxr

e Flood-Fill: floods region with newColoxr

e Basicidea:

e start at “seed” pixel (x, y)
e If (x,y) has color intColor, change it to newColor
e Do same recursively for all 4 neighbors

(X, y+1)

mq (x+1, y)
(X! y'l)

Recursive Flood-Fill Algorithm :

e Note: getPixel(x,y) used to interrogate pixel color at (x, y)

void floodFill (short x, short y, short intColor)
{
if (getPixel (x, y) == intColor)
{
setPixel (x, vy)
floodFill(x - 1, y, intColor); // left pixel
floodFill(x + 1, y, intColor); // right pixel
floodFill(x, y + 1, intColor); // down pixel
floodFill(x, y — 1, intColor); // up pixel

(X, y+1)

mq (x+1,)
(X1 y'l)

Recursive Flood-Fill Algorithm :

e Recursive flood-fill is blind
e Some pixels retested several times

e Region coherence is likelihood that an interior pixel
mostly likely adjacent to another interior pixel

e Coherence can be used to improve algorithm
performance

e A run: group of adjacent pixels lying on same scanline
e Fill runs(adjacent, on same scan line) of pixels

Region Filling Using Coherence soos

e Example: start at s, initial seed

a) b) stack:

L] L E}

Pseudocode:
Push address of seed pixel onto stack
% T *mfi while(stack is not empty)
: E} Pop stack to provide next seed

Fill in run defined by seed

o f In row above find reachable interior runs

Push address of their rightmost pixels

Do same for row below current run

}
Note: algorithm most efficient if there is span coherence (pixels on scanline
have same value) and scan-line coherence (consecutive scanlines similar)

Filling Polygon-Defined Regions

e Problem: Region defined polygon with vertices

Pi = (Xi, Yi), for i = 1...N, specifying sequence of P’s
vertices
P1 P2

P7 P3

P5

P6 P4

Filling Polygon-Defined Regions

e Solution: Progress through frame buffer scan line by
scan line, filling in appropriate portions of each line

e Filled portions defined by intersection of scan line
and polygon edges

e Runs lying between edges inside P are filled
e Pseudocode:

for (each scan Line L)

{
Find intersections of L with all edges of P
Sort the intersections by increasing x-value

Fill pixel runs between all pairs of intersections

Filling Polygon-Defined Regions

e Example: scan liney = 3 intersects 4 edges e3, e4, e5, e6
e Sort x values of intersections and fill runs in pairs
e Note: at each intersection, inside-outside (parity), or vice versa

A

P1 P2

P3

P6 P4

v

Data Structure

X1

Intersections

— >

X9

Ag

Scanlines
S,
+
i_.

XY

Filling Polygon-Defined Regions :

e Problem: What if two polygons A, B share an edge?
e Algorithm behavior could result in:

e setting edge first in one color and the another

e Drawing edge twice too bright

e [Vake Rule: when two polygons share edge, each polygon
owns its left and bottom edges

e E.g.below draw shared edge with color of polygon B

B

Filling Polygon-Defined Regions

e Problem: How to handle cases where scan line intersects
with polygon endpoints to avoid wrong parity?

e Solution: Discard intersections with horizontal edges and

with upper endpoint of any edge
See 0
——

See 0
~

See 2 See 1
/

See 0

Seez/ //

See 1

Antialiasing :

e Raster displays have pixels as rectangles

e Aliasing: Discrete nature of pixels introduces
l(jaggiesﬂ

a) b)

N '
/ l
l A

=T

Antialiasing

e Aliasing effects:
Distant objects may disappear entirely
Objects can blink on and off in animations
e Antialiasing techniques involve some form of
blurring to reduce contrast, smoothen image
e Three antialiasing techniques:
Prefiltering

Postfiltering
Supersampling

Prefiltering

e Basic idea:
compute area of polygon coverage
use proportional intensity value

e Example: if polygon covers % of the pixel
Pixel color = % polygon color + % adjacent region color

e Cons: computing polygon coverage can be time
consuming

Supersampling

e Assumes we can compute color of any location (x,y) on screen
e Sample (x,y) in fractional (e.g. 72) increments, average samples

e Example: Double sampling = increments of 2 = 9 color values
averaged for each pixel

} Average 9 (x, y) values
to find pixel color

— O
nlialls
— O

Postfiltering

e Supersampling weights all samples equally

e Post-filtering: use unequal weighting of samples
e Compute pixel value as weighted average

e Samples close to pixel center given more weight

Sample weighting

1/16 (1/16 | 1/16

:} 1/16 (1/2 |1/16

1/16 (1/16 |(1/16

— O
nlialls
— O

Antialiasing in OpenGL

e Many alternatives
e Simplest: accumulation buffer

e Accumulation buffer: extra storage, similar to frame
buffer

e Samples are accumulated

e When all slightly perturbed samples are done, copy
results to frame buffer and draw

Antialiasing in OpenGL :

e Firstinitialize:
e glutInitDisplayMode (GLUT SINGLE |
GLUT RGB | GLUT ACCUM | GLUT DEPTH) ;

e Zero out accumulation buffer
¢ glClear (GLUT ACCUM BUFFER BIT);

e Add samples to accumulation buffer using
e glAccum()

Antialiasing in OpenGL

e Sample code
e jitter[] stores randomized slight displacements of camera,
e factor, f controls amount of overall sliding

glClear (GL _ACCUM BUFFER BIT) ;
for(int i=0;i < 8; i++)
{
cam.slide(f*jitter[i] .x, f£*jitter[i].y, O);
display()

glAccum (GL_ACCUM, 1/8.0); jitter.h

} -0.3348, 0.4353
glAccum (GL RETURN, 1.0); 0.2864, -0.3934

References

e Angel and Shreiner, Interactive Computer Graphics,
6t edition

e Hill and Kelley, Computer Graphics using OpenGL, 3"
edition, Chapter 9

