Computer Graphics (CS 4731)
Lecture 2: Introduction to
OpenGL/GLUT (Part 1)

Prof Emmanuel Agu

Computer Science Dept.
Worcester Polytechnic Institute (WPI)

Recall: OpenGL/GLUT Basics

e OpenGL’s function — Rendering (or drawing)

e OpenGL can render: 2D, 3D or images

e OpenGL does not manage drawing window
e Portable code!

e GLUT: Does minimal window management

GLUT

OpenGL

Recall: OpenGL Programming Interface

e Programmer view of OpenGL?
e Writes OpenGL Application programs
e Uses OpenGL Application Programmer Interface (API)

| S
S Graphics
Application "ap
R rra] library Hardware ~——— Mouse
(API) _|_>

Sequential Vs Event-driven

OpenGL programs are event-driven

Sequential program
Start at main()

Perform actions 1, 2, 3.... N
End

Event-driven program
Start at main()
Initialize
Wait in infinite loop

Wait till defined event occurs
Event occurs => Take defined actions

What is World’s most famous event-driven program?

OpenGL: Event-driven

Program only responds to events
Do nothing until event occurs

Example Events:
mouse clicks,
keyboard stroke
window resize

Programmer:

defines events

Defines actions to be taken
System:

maintains event queue

takes programmer-defined actions

A\ 4
A 4

Left mouse click

Keyboard ‘h’ key

v

OpenGL: Event-driven

e How in OpenGL?
Programmer registers callback functions (event handler)
Callback function called when event occurs

e Example: Programmer
Declare function myMouse, called on mouse click
Register it: glutMouseFunc(myMouse);

e OS receives mouse click, calls callback function myMouse

4
v

— Mouse click

myMouse [~

Event Callback function

glinfo: Finding out about your Graphics Card

e Gives OpenGL version and extensions your graphics card
supports

e Homework 0!

Intel(F] HD Graphics

2.1.0 - Build 815102202

Some OpenGL History

OpenGL either on graphics card or in software (e.g. Mesa)
Each graphics card supports specific OpenGL version
OpenGL previously fixed function pipeline (up to version 1.x)

Pre-defined functions to generate picture
Programmer could not change steps, algorithms. Restrictive!!

Shaders

allow programmer to write/load some OpenGL functions
proposed as extensions to version 1.4
part of core in OpenGL version 2.0 till date (ver 4.2)

For this class you need: OpenGL version 3.3 or later

Other OpenGL Versions

e OpenGL4.1and 4.2
Adds geometry shaders

e OpenGL ES: Mobile Devices

Version 2.0 shader based

e WebGL

Javascript implementation of ES 2.0
Supported on newer browsers

000
0000
0000
00
| X J
GLEW 2
e OpenGL Extension Wrangler Library
e Makes it easy to access OpenGL extensions available on a
particular system
e More on this later
GLEW -
Ofi.e-nQL / Graphics
application * Driver
rogram
P9 ? GL —-—/ GLX — Xlib, Xt —»

GLUT

OpenGL/GLEW architecture on X Windows

Windows Installation of GLUT, GLEW

e Install Visual Studio (e.g 2010)
e Download freeglut 32-bit (GLUT implementation)

e Download GLEW

Check graphics card

A4

e Unzip => .lib, .h, .dll files Install GLUT, GLEW

e Install
Put .dll files (for GLUT and GLEW) in C:\windows\system
Put .h files in Visual Studio...\include\ directory
Put .lib files in Visual Studio....\lib\ directory

Note: Use include, lib directories of highest VS version

OpenGL Program?

e Usually has 3 files:

Main .cpp file: containing your main function
Does initialization, generates/loads geometry to be drawn

Two shader files:
Vertex shader: functions to manipulate (e.g. move) vertices

Fragment shader: functions to manipulate (e.g change color
of) fragments/pixels

Vertex shader
.cpp file
fragment shader
Next: look at .cpp file

Getting Started: Set up Visual studio Solution

1. Create empty project Check graphics card

2. Create blank console application (C program) v

3. Add console application to project Install GLUT, GLEW

4. Include glew.h and glut.h at top of your program

A4

Create VS Solution

#include <glew.h>

#include <GL/glut.h> ~—
GLUT, GLEW includes

Note: GL/ is sub-directory of compiler include/ directory

e glut.h contains GLUT functions, also includes gl . h
e OpenGL drawing functionsingl .h

Getting Started: More #includes .

e Most OpenGL applications use standard C library (e.g for
printf), so

#i1nclude <stdlib_.h>
#i1nclude <stdio.h>

XYY
X
o0
o
OpenGL/GLUT Program Structure
e Configure and open window (GLUT)
Configure Display mode, Window position, window size
e Register input callback functions (GLUT)
Render, resize, input: keyboard, mouse, etc GLUT, GLEW includes
e My initialization !
Set background color, clear color, etc Create GLUT Window
Generate points to be drawn l
Initialize shader stuff T
e Initialize GLEW
\ 4
e Register GLUT callbacks Inialialize GLUT, GLEW

glutMainLoop()

Waits here infinitely till event

A4

GLUT main loop

GLUT: Opening a window

e GLUT used to create and open window

glutinit(&argc, argv);
= Initializes GLUT

glutinitDisplayMode(GLUT_SINGLE | GLUT _RGB);
= sets display mode (e.g. single buffer with RGB colors)

glutInitWindowSi1ze(640,480) ;
= sets window size (Width x Height) in pixels

glutinitPosition(100,150);
= sets location of upper left corner of window

glutCreateWindow(“my first attempt™);
= open window with title “my first attempt”

e Then also initialize GLEW

glewlnit();

OpenGL Skeleton

void main(int argc, char** argv){

// First initialize toolkit, set display mode and create window

glutlnit(&argc, argv); // initialize toolkit
glutlnitDisplayMode(GLUT_SINGLE | GLUT_RGB);
glutInitWindowSize(640, 480);
glutlnitWindowPosition(100, 150);
glutCreateWindow(“my first attempt™);
glewlnit();

150

// ... then register callback functions, my first attempt

100

// ... do my initialization

// .. wait in glutMainLoop for events
480

640

GLUT Callback Functions

e Register all events your program will react to

e Callback: a function system calls when event occurs
e Event occurs => system callback

e No registered callback = no action

e Example: if no registered keyboard callback function, hitting
keyboard keys generates NO RESPONSE!!

GLUT Callback Functions

e GLUT Callback functions in skeleton
glutDisplayFunc(myDisplay) : Image to be drawn initially

glutReshapeFunc(myReshape) : called when window is
reshaped

glutMouseFunc(myMouse) : called when mouse button is
pressed

glutKeyboardFunc(mykeyboard) : called when keyboard is
pressed or released

e glutMainLoop():

program draws initial picture (by calling myDisplay function once)
Enters infinite loop till event

OpenGL Skeleton

void main(int argc, char** argv){

// First initialize toolkit, set display mode and create window
glutlnit(&argc, argv); // initialize toolkit
glutlnitDisplayMode(GLUT_SINGLE | GLUT _RGB);
glutInitWindowSize(640, 480);
glutlnitWindowPosition(100, 150);
glutCreateWindow(“my first attempt™);
glewlnit();

// ... now register callback functions
glutDisplayFunc(myDisplay);
glutReshapeFunc(myReshape) ;
glutMouseFunc(myMouse) ;
glutKeyboardFunc(myKeyboard) ;

mylnit();
glutMainLoop();

Example of Rendering Callback

e Do all drawing code in display function

e Called once initially and when picture changes (e.g.resize)

e First, register callback in main() function
glutDisplayFunc(myDisplay);

e Then, implement display function

void myDisplay(void)

// put drawing commands here

Old way: Drawing Example

e Example: draw three dots. How?
e Specify vertices between glBegin and glEnd

e Immediate mode
e Generate points, render them (points not stored)
e Compile scene with OpenGL program

¥oid myDisplay(void)

Also GL_LINES,
glBegin(GL _POINTS)«— GL_POLYGON...

glVertex2i1(100,50);
glVertex21(100,130);
glVertex2i1 (150, 130);

glFlush();
rorces 91EAAC) f \
orces
drawing to

complete X \/

Immediate Mode Graphics

e Geometry specified as sequence of vertices in application
e Immediate mode

OpenGL application receives input on CPU, moved to GPU, render!

Each time a vertex is specified in application, its location is sent to GPU

Creates bottleneck between CPU and GPU

Removed from OpenGL 3.1

Vertices
generated
on CPU

Vertices sent
to GPU one by one

>

Vertices
rendered
on GPU

New: Better Way of Drawing: Retained Mode Graphics

e Retained mode: generate all vertices in drawing, store in
array, then move array of all points to GPU for drawing

e Rendering steps:

1. Generate points

2. Store all vertices into an array

3. Create GPU buffer for vetices

4. Move vertices from CPU to GPU buffer

5. Draw points from array on GPU using glDrawArray

Better Way of Drawing: Retained Mode Graphics

e Useful to declare types point2 for <x,y> locations, vec3 for
<X,y,z> vector coordinates with their constructors

e put declarations in header file vec.h
#include “vec.h”

vec3 vectorl;

e Can also do typedefs

typedef vec2 point2;

1. Generate Points to be Drawn
2. Store in an array

e Generate points & store vertices into an array

point2 points[NumPoints];

points[0] = point2(-0.5, -0.5);
points[1l] = point2(0.0, 0.5);
points[2] = point2(0.5, -0.5);

e Then bind the vertex array object

3. Create GPU Buffer for Vertices

Rendering from GPU memory significantly faster. Move data there
Fast GPU (off-screen) memory for data called Buffer Objects

An array of buffer objects (called vertex array object) are usually created

So, first generate an array of names of vertex array objects

GLuint vao;

glGenVertexArrays(1, &vao);

Number of Buffer Object
names to generate

Array in which vertex
buffer names are stored

glBindVertexArray(vao);

3. Create GPU Buffer for Vertices

e Next, create a buffer object in two steps

Create VBO and give it name (unique ID number)

GLuint buffer;
glGenBuffers(1, &buffer); // create one buffer object

/

Number of Buffer Objects to return

Make created VBO currently active one

giBindBuffer(GL_ARRAY_BUFFER, buffer); //data is array

4. Move points GPU memory

Move points generated earlier to VBO

glBufferData(GL_ARRAY BUFFER, buffer, sizeof(points),
points, GL STATIC DRAW); //data i1s array

Data to be transferred to GPU
memory (generated earlier)

e GL STATIC DRAW: buffer object data will be specified once by
application and used many times to draw

e GL DYNAMIC DRAW: buffer object data will be specified repeatedly
and used many times to draw

5. Draw points (from VBO)

glDrawArrays(GL_POINTS, O,

/

\

=

Render buffered
data as points

Starting
Index

Number of
points to be

rendered

e Display function using glDrawArrays:

void mydisplay(void){
glClear(GL_COLOR_BUFFER_BIT); // clear screen

glDrawArrays(GL_POINTS, O, N);

glFlush();
+

e Other possible arguments to glDrawArrays instead of

GL_POINTS?

// force rendering to show

References

e Angel and Shreiner, Interactive Computer Graphics,
6t edition, Chapter 2

e Hill and Kelley, Computer Graphics using OpenGL, 3"
edition, Chapter 2

