Computer Graphics 4731
Lecture 10: Rotations and Matrix
Concatenation

Prof Emmanuel Agu

Computer Science Dept.
Worcester Polytechnic Institute (WPI)

Recall: 3D Translation

e Translate: Move each vertex by same distance d = (t,, t,, t,)

translation: every vertex displaced
by same vector

Recall: 3D Translation Matrix

*In 3D : %) (X)) (1)
y'p = |V * ty
. 2 \Z) Y
ranslate(tx,ty,tz)
£ %) (10 0 t) (X
y _ 0010 ¢t | y
4 0 01t Z
1 000 1) 1

"Where: xX=x.1 + y.0 +z.0 +tx.1 =x +tX, ... etc

Recall: Scaling

Scale: Expand or contract along each axis (fixed point of origin)

nl
2
e T el

X'=8, X
S =S(s, Sy S,) y'=s,X
Z'=S,X
p’=Sp
X S, 0 0 O0) (x
y|1 10 5 0 0 LY
271 |0 0 S, O Z *Example: Sx =Sy =Sz=0.5
1/ 0 0 0 1/ 1 scales big cube (sides = 1)
to small cube (sides = 0.5)

Nate Robbins Translate, Scale Rotate
Demo

World- space view

Screen-space view

World-space view SCreen-space view

Command manipulation window

Command manipulation window

glTranslatef(0.00 , 0.00 , 0.00); Glfloat pos[4] = { 1.50 , 1.00 , 1.00 ,0.00 }

glRotatef(0.0 ,0.00 ,1.00 ,0.00) gluLookAt(0.00 ,0.00 ,2.00 , <-eye
glScalef(1.00 ,1.00 , 1.00 }; 0.00 ,0.00 ,000 , <- center
glBegin(... J; 000 ,1.00 ,000); <-up

glLightfv(GL_LIGHT0, GL_POSITION, pos);

Click on the arguments and move the mouse to modify values. Click on the arguments and move the mouse to modify values.

Rotating in 3D

e Many degrees of freedom. Rotate about what axis?
e 3D rotation: about a defined axis
e Different transform matrix for:

Rotation about x-axis

Rotation about y-axis

Rotation about z-axis

Rotating in 3D

e New terminology
X-roll: rotation about x-axis
Y-roll: rotation about y-axis
Z-roll: rotation about z-axis

e Which way is +ve rotation

Look in —ve direction (into +ve arrow)

y
CCW is +ve rotation (}

) (

ﬁz >

Rotating in 3D

a) the barn b) =70° x-roll Yy

y .
A

¢) 30° y-roll d) -90° z-roll Yy

S

T e

Rotating in 3D

e For arotation angle, f# about an axis

e Define:
¢ =cos(A) s =sin(A)
x-roll or (RotateX) (1 0 0 0
0 c —-s O
R —
B=ly « ¢ o
00 0 1,

000
000
o0
®
Rotating in 3D
(¢ 0 s 0)
y-roll (or RotateY)
O 1 0 0 Rules:
RY(IB): s 0 c 0 Write 1 in rotation row,
o column
*\Wri in the other
\ 0 00 1) rx\\ivst?cglun:n: ome
*Write c,s in rect pattern
z-roll (or RotateZ) (c —s 0 0)
s ¢ 0O
R =
B)=l0 0 1 o
0 0 0 1,

Example: Rotating in 3D

Question: Using y-roll equation, rotate P = (3,1,4) by 30 degrees:

Answer: ¢ = cos(30) = 0.866, s = sin(30) = 0.5, and

(¢ 0 s 0Y3) (46)

0 10 0|1 1
= 5 0 ¢ 0l4|7| 1964

0 0 0 1X1) U 1)

Linel: 3.c+1.0 +4s+1.0
=3x0.866+4x05=4.6

3D Rotation

e Rotate(angle, ux, uy, uz): rotate by angle § about an arbitrary
axis (a vector) passing through origin and (ux, uy, uz)

e Note: Angular position of u specified as azimuth (@) and

latitude (&)

Az /(ux, uy, uz)
u

Approach 1: 3D Rotation About eecs
Arbitrary Axis :

e Can compose arbitrary rotation as combination of:
e X-roll (by ananglef)
e Y-roll (byananglep)
o Z-roll (byanangle §,)

M =R,(8;)R,(5,)R,(5,)

~

Read in reverse order

Approach 1: 3D Rotation using Euler
Theorem

e Classic: use Euler’s theorem

e Euler’s theorem: any sequence of rotations = one
rotation about some axis

e Want to rotate 3 about arbitrary axis u through origin
e Our approach:

Use two rotations to align u and x-axis
Do x-roll through angle 3
Negate two previous rotations to de-align u and x-axis

Approach 1: 3D Rotation using Euler
Theorem

e Note: Angular position of u specified as azimuth (&)
and latitude (¢)

e First try to align u with x axis

.'Il.'._\\
CTI-
|
77 u
a')-\-.
W T O,
[j =
lf)
.'/
.l’x-"
VA
7 A\
'd O |
| -)_ H"‘*-..
3 X

Approach 1: 3D Rotation using Euler
Theorem

e Step 1: Do y-roll to line up rotation axis with x-y plane

R, (0)

Approach 1: 3D Rotation using Euler

Theorem

e Step 2: Do z-roll to line up rotation axis with x axis

?z (_¢)

R, (6)

Approach 1: 3D Rotation using Euler

Theorem

e Remember: Our goal is to do rotation by g around u

e But axis u is now lined up with x axis. So,

e Step 3: Do x-roll by g around axis u

Y A

z/\

R, (AR, (4R, (6)

Approach 1: 3D Rotation using Euler

Theorem

e Next 2 steps are to return vector u to original position

e Step 4: Do z-rollinx-y p

dane

R, (#)

R, (PR, (=4)R, (0)

Approach 1: 3D Rotation using Euler
Theorem

e Step 5: Do y-roll to return u to original position

R,(8) =R, (-0)R, (AR, (B)R,(-#)R, (6)

Approach 2: Rotation using
Quartenions

e Extension of imaginary numbers from 2 to 3 dimensions
e Requires 1 real and 3 imaginary components I, J, K

0=0o+q,1+0,)+03K

e Quaternions can express rotations on sphere smoothly
and efficiently

Approach 2: Rotation using
Quartenions

e Derivation skipped! Check answer
e Solution has lots of symmetry

’

R(B) =

\ 0 0

¢ =cos(f3) s =sin()

2
c+(1-c)u, (1—c)uyux+szuZ (1-c)u,u, +su,
(1-cjuu, +su, c+(1-c)u, (1—c:)uzuy—32uX
(l-cuu,-su, (@-cjuu,-su, c+(1-c)u,

0

Inverse Matrices

e Can compute inverse matrices by general formulas
e But easier to use simple geometric observations
Translation: T'l(dx, d, d,)=T(-d, -d, -d,)
Scaling: S (s,, s,, s,)=S(1/s,, 1/s, 1/s,)
Rotation: R "1(q) = R(-q)
Holds for any rotation matrix

Instancing

e During modeling, often start with simple object centered at
origin, aligned with axis, and unit size

e Can declare one copy of each shape in scene
e E.g. declare 1 mesh for soldier, 500 instances to create army
e Then apply instance transformation to its vertices to
Scale
Orient T_.__.,.TH..
Locate

Concatenating Transformations

Can form arbitrary affine transformation matrices by multiplying
rotation, translation, and scaling matrices

General form:

M1 X M2 XM3XP

where M1, M2, M3 are transform matrices applied to P
Be careful with the order!!

For example:

Translate by (5,0) then rotate 60 degrees NOT same as
Rotate by 60 degrees then translate by (5,0)

Concatenation Order

e Note that matrix on right is first applied
e Mathematically, the following are equivalent

p’ = ABCp = A(B(Cp))

e Efficient!!

Matrix M=ABC is composed, then multiplied by many vertices

Cost of forming matrix M=ABC not significant compared to
cost of multiplying (ABC)p for many vertices p one by one

Rotation About Arbitrary Point other
than the Origin

e Default rotation matrix is about origin

e How to rotate about any arbitrary point (Not origin)?
e Move fixed point to origin T(-py)
e Rotate R(0)
e Move fixed point back T(py)

S0, M =T(py) R(6) T(-py)

Y
[

’
’
-
/
#
s
’
/
-
Fl
-
#
.
F
-
Zz Z

Scale about Arbitrary Center

e Similary, default scaling is about origin
e To scale about arbitrary point P = (Px, Py, Pz) by (Sx, Sy, Sz)

Translate object by T(-Px, -Py, -Pz) so P coincides with origin
Scale the object by (Sx, Sy, Sz)
Translate object back: T(Px, Py, Py)

e In matrix form: T(Px,Py,Pz) (Sx, Sy, Sz) T(-Px,-Py,-Pz) * P

X' 1 0 0 Px)ysS, 0 O O0)y1 0 O —-Px)x
y' 010 Pyyo0 §s 0 00 1 0 -Pyjy
211001 PzJO 0 S, 0[/0 01 —Pz|z
1 o o0 1A0 O O 1X0 OO0 1 M1

References

e Angel and Shreiner, Chapter 3

e Hill and Kelley, Computer Graphics Using OpenGL, 3™
edition

