Computer Graphics (CS 4731)
Lecture 12: Viewing & Camera Control

Prof Emmanuel Agu

Computer Science Dept.
Worcester Polytechnic Institute (WPI)

Finding Vector Reflected From a Surface

e a =original vector

e n =normal vector

e r =reflected vector

e m = projection of aalongn

e e = projection of a orthogonal ton

Note: O, = 0O,

e=a-m
r=e-m
=>r=a-2m

000
000
L X
o
Lines
e Consider all points of the form
P(a)=P,+a d
Line: Set of all points that pass through P, in direction
of vector d
4
APl

Parametric Form

e Two-dimensional forms of a line
Explicit: y = mx +h
Implicit: ax + by +¢c =0
Parametric:
x(a) = ax, + (1-a)x,
y(a) = ay, + (I-a)y,
e Parametric form of line
More robust and general than other forms
Extends to curves and surfaces

Convexity

e An object is convex iff for any two points in the
object all points on the line segment between these
points are also in the object

not convex
convex

Curves and Surfaces

e Curves: 1-parameter non-linear functions of the
form P(a)

e Surfaces: two-parameter functions P(a.,)
e Linear functions give planes and polygons

L

P(o) P(a., B)

Computer Graphics (CS 4731)
Lecture 12: Viewing & Camera Control

Prof Emmanuel Agu

Computer Science Dept.
Worcester Polytechnic Institute (WPI)

3D Viewing?

e Objects inside view volume show up on screen
e Objects outside view volume clipped!

2. Set view volume
(3D region of interest)

1. Set camera position viewing /

\\ volume

camera

tripod

Different View Volume Shapes :

Orthogonal view volume

e Different view volume => different look

e Foreshortening? Near objects bigger
e Perpective projection has foreshortening

e Orthogonal projection: no foreshortening

The World Frame :

e Objects/scene initially defined in world frame

e Objects positioned, transformations (translate, scale,
rotate) applied to objects in world frame

World frame
(Origin at 0,0,0) \
Y=

Camera Frame -

e More natural to describe object positions relative to camera (eye)
e Think about

e Our view of the world
e First person shooter games

Camera Frame

e Viewing: After user sets camera (eye) position, represent objects
in camera frame (origin at eye position)

e Viewing transformation: Changes object positions from world

frame to positions in camera frame using model-view matrix

World frame
(Origin at 0,0,0)

Camera frame
(Origin at camera)

Default OpenGL Camera

e Initially Camera at origin: object and camera frames same
e Camera located at origin and points in negative z direction
e Default view volume is cube with sides of length 2

Y

Default view volume clipped out

(objects in volume

2|/

are seen) \ ‘
ol .

.Z/‘// L Proiec’rionzpzlcgle

Moving Camera Frame :

Same relative distance after
Same result/look

RN

Translate objects +5 Translate camera -5
away from camera away from objects

default frames

Y, Ye O
yc x Q
L / 1
1 z
_— 0 X z

Y

L -

AN A

(a)

Moving the Camera :

e We can move camera using sequence of rotations
and translations

<

e Example: side view
e Rotate the camera
e Move it away from origin

e Model-view matrix C=TR .

gﬁfiifﬁfff’////,
// Using mat.h R

mat4 t = Translate (0.0, 0.0, -d);
mat4 ry = RotateY(90.0);
mat4d m = t*ry;

Moving the Camera Frame :

e Object distances relative to camera determined by the
model-view matrix

e Transforms (scale, translate, rotate) go into modelview matrix
e Camera transforms also go in modelview matrix (CTM)

Rotate
Camera Scale
Transforms Translate

~N S

CTM

The LookAt Function

e Previously, command gluLookAt to position camera
e gluLookAt deprecated!!
e Homegrown mat4 method LookAt() in mat.h

e Can concatenate with modeling transformations

void display(){

mat4d mv = LookAt(vec4 eye, vecd at, vecd up);

LookAt

LookAt(eye, at, up)

4
(ot , at , at_) 4
\y Z
(upx, up,,, upz) & -
o -
N
L But Why do we set
(eye , eye, , eye) Up direction?

Programmer defines:

* eye position

e LookAt point (at) and

e Up vector (Up direction usually (0,1,0))

Nate Robbins LookAt Demo

World-space view SCreen-space view

Command manipulation window

glTranslatef{ 0.00 ,0.00 ,0.00 J;
glRotatef(0.0 ,0.00 ,1.00 ,0.00)
glScalef(1.00 ,1.00 , 1.00 };

giBegin(...),

Click on the arguments and move the mouse to modify values.

World- space view Screen-space view

Command manipulation window

GlLfloat pos[4] = { 1.50 , 1.00 , 1.00 , 0.00 };
gluLookAt(0.00 ,0.00 ,2.00 , <-eye
000 ,000 ,000 , <- center

000 ,1.00 ,000); <-up

glLightfv(GL_LIGHT0, GL_POSITION, pos);

Click on the arguments and move the mouse to modify values.

What does LookAt do?

e Programmer defines eye, lookAt and Up

e LookAt method:

e Form new axes (u, v, n) at camera

e Transform objects from world to eye camera frame

Eye coordinate

World coordinate
Frame

Frame

000
Camera with Arbitrary Orientation sece
.. o0
and Position °
e Define new axes (u, v, n) at eye
e v points vertically upward,
e naway from the view volume, World coordinate

e u atright angles to both nand v. Frame (old)

e The camera looks toward -n.
e All vectors are normalized.

Eye coordinate
Frame (new)

&=

LookAt: Effect of Changing Eye Position
or LookAt Point

e Programmer sets LOoOkAt(eye, at, up)
o If eye, lookAt point changes => u,v,n changes

Viewing Transformation Steps

1. Form camera (u,v,n) frame

2. Transform objects from world frame (Composes matrix
for coordinate transformation)

e Next, let’s form camera (u,v,n) frame

Constructing U,V,N Camera Frame

e Lookat arguments: LookAt(eye, at, up)
e Known: eye position, LookAt Point, up vector
e Derive: new origin and three basis (u,v,n) vectors

Lookat Point

Eye Coordinate Frame

e New Origin: eye position (that was easy)

e 3 basis vectors:

e one is the normal vector (n) of the viewing plane,

e other two (u and v) span the viewing plane

Lookat Point

world origin

»
»

(u,v,n should all be orthogonal)

n is pointing away from the
world because we use left
hand coordinate system

N =eye — kat Point
n N

00
/ | N|
T

Remember u,v,n should
be all unit vectors

Eye Coordinate Frame °

e How about u and v?

e\We can get u first -
eu is a vector that is perp
to the plane spanned by

Lookat N and view up vector (V_up)

U=V up X n

v

u U/ |U]|

Eye Coordinate Frame

How about v?

Lookat

v

Knowing n and u, getting v
IS easy

vV = n Xu

v is already normalized

Eye Coordinate Frame

Put it all together

Lookat

v

Eye space origin: (Eye.x , Eye.y,Eye.z)
Basis vectors:
(eye — Lookat) / | eye — Lookat]|

(VW upx n)/ |V upxn|
n x u

n

o000
o0o
o0
O
Step 2: World to Eye Transformation
e Next, use u, v, n to compose LookAt matrix
e Transformation matrix (M,,,.) ?
P’ = MWZex P
\ u 1. Come up with transformation
Ly \A sequence that lines up eye frame
P N with world frame
O Eye
world frame 2. Apply this transform sequence to
point P in reverse order

World to Eye Transformation

Rotate eye frame to “align” it with world frame

Translate (-ex, -ey, -ez) to align origin with eye

Rotation: ux uy uz
- VX VY VZ
= nx n
Yy Nz
vy n 0 0 0
(ex,ey,ez)
world
> X Translation:

ocNoNoN
Oor O
Or OO

pOoOQC

-eXx

-ey
-eZ

World to Eye Transformation

Transformation order: apply the transformation to the
object in reverse order - translation first, and then rotate

Rotation Translation
Mw2e = ux uy ux O 1 0 0 -ex
vx vy vz O O 1 0 -ey
nx ny nz O O 0 1 -ez
O 0O O 1 O O O 1
v
y n ux uy uz -e.u Multiplied together
(ex,ey,ez) _ VX VY VZ -€.V_ _— —|ookAttransform
world — |nX ny nz -e.n
X O 0O O 1

Note: e.u = ex.ux + ey.uy + ez.uz

lookAt Implementation (from mat.h)

Eye space origin: (Eye.x , Eye.y,Eye.z)

Basis vectors:

n = (eye — Lookat) / | eye — Lookat]|
u = (W upx n)/ |V upxn|
V = nxu

ux uy uz
VX VY VZ
nxX ny nz
O 0O O

-€é. u
-€é.V
-€. n
1

mat4 LookAt(const vec4& eye, const vec4& at, const vec4& up)

{
vecd n = normalize(eye - at);
vec4 u = normalize(cross(up,n));
vecd v = normalize(cross(n,u));
vecd t = vec4(0.0, 0.0, 0.0, 1.0);
mat4 ¢ = mat4(u, v, n, t);

return ¢ * Translate(-eye);

References

e Interactive Computer Graphics, Angel and Shreiner,
Chapter 4

e Computer Graphics using OpenGL (3™ edition), Hill
and Kelley

