Remember

e Midterm: Next Thursday (Feb 7)
e More on that next week

Other Camera Controls

e The LookAt function is only for positioning camera

e Other ways to specify camera position/movement
Yaw, pitch, roll
Elevation, azimuth, twist
Direction angles

Flexible Camera Control

e Sometimes, we want camera to move
e Like controlling a airplane’s orientation

e Adopt aviation terms:
Pitch: nose up-down
Roll: roll body of plane
Yaw: move nose side to side

a) pitch B ol ¢l yaw

Yaw, Pitch and Roll Applied to Camera | ¢

e Similarly, yaw, pitch, roll with a camera

ai camera orientation b with rall ¢ no rall
-

|—|.-"r-"I —1

Flexible Camera Control

e Create a camera class

class Camera P
_ |r£l
private:)

Point3 eye;
Vector3 u, v, n;... etc

e Camera functions to specify pitch, roll, yaw. E.g

cam.slide(-1, 0, -2); // slide camera forward -2 and left -1
cam.rol1(30); // roll camera 30 degrees

cam.yaw(40) ; // yaw i1t 40 degrees

cam.pitch(20); // pitch 1t 20 degrees

Recall: Final LookAt Matrix

. 4
« Slide along u, v or n)

» Changes eye position
» Affects these componenk — P\ —

slide
ux uy uz|l-e.u
VX Vy VZ||-e .V
nx ny nz||-e.n
O 0O O 1
. roll
e Pitch, yaw, roll rotates u, v or n — 8\ — N
¢ Changes changes these components -

Implementing Flexible Camera Control

Camera class: maintains current (u,v,n) and eye position

class Camera
private:
Point3 eye;
Vector3 u, Vv, n;... etc

User inputs desired roll, pitch, yaw angle or slide
Roll, pitch, yaw: calculate modified vector (u’, v/, n’)
Slide: Calculate new eye position
Update lookAt matrix, Load it into CTM

Load Matrix into CTM

void Camera::setModelViewMatrix(void)

{ // load modelview matrix with camera values

matd m;

Vector3 eVec(eye.
m[O0] = u.x; m[4]
m[1] = v.x; m[5]
m[2] = n.x; m[6]
m[3] = O; m[7]

CTM = m; // Finally,

X,

ux uy uz |-e.u
VX VY VZ |[-e .V
nNX ny nz -e.n
O 0O O 1

eye.y, eye.z);// eye as vector

u.y;
V.Y;
n.y;
0;

load

m[8] = u.z;
m[9] = v.z;
m[10] = n.z;
m[11] = O;

m[12]
m[13]
m[14]
m[15]

—-dot(eVec,u),
-dot(eVec,V);
-dot(eVec,n);
1.0;

matrix m into CTM Matrix

« Call setModelViewMatrix after slide, roll, pitch or yaw

« Slide changes eVec,

* roll, pitch, yaw, change u, v, n

Example: Camera Slide

e User changes eye by delU, delV or delN
e eye = eye + changes (delU, delV, delN)
e Note: function below combines all slides into one

voild camera::slide(float delU, float delV, float delN)
{
eye.x += delU*u.x + delV*v.x + delN*n.x;
eye.y += delU*u.y + delV*v.y + delN*n.y;
eye.z += delU*u.z + delV*v.z + delN*n.z;
setModelViewMatrix();

E.g moving camera by D along its u axis
= eye + Du

Example: Camera Roll

vy |V u'=cos(a)u+sin(a)v
\ .
\\OC i V'=—sin(a)u +cos(a)V
) ////oc//
/,\\ - » U
S
\

void Camera::roll(float angle)

{ /7 roll the camera through angle degrees
float cs = co0s(3.142/180 * angle);
float sn = sin(3.142/180 * angle);
Vector3 t = u; // remember old u

u.set(cs*t.x — sn*v.x, cs*t.y — sn.v.y, cs*t.z — sn.v.z);

v.set(sn*t.x + cs*v.x, sn*t.y + cs.v.y, sn*t.z + cs.v.z)
setModelViewMatrix();

Computer Graphics (CS 4731)
Lecture 13: Projection (Part 1)

Prof Emmanuel Agu

Computer Science Dept.
Worcester Polytechnic Institute (WPI)

Recall: 3D Viewing and View Volume

Now:

. Set view volume
Previously:

Lookat() to set
camera position

N

camera

viewing
volume

tripod

Recall: Different View Volume Shapes

Perspective view volume

Orthogonal view volume (exhibits foreshortening)

(no foreshortening)

e Different view volume => different look
e Foreshortening? Near objects bigger

View Volume Parameters

e Need to set view volume parameters
Projection type: perspective, orthographic, etc.
Field of view and aspect ratio
Near and far clipping planes

Field of View

e View volume parameter
e Determines how much of world in picture (vertically)
e Larger field of view = smaller objects drawn

field of view CEnter of projection

Near and Far Clipping Planes

e Only objects between near and far planes drawn

Far plane
/

Viewing Frustrum

e Near plane + far plane + field of view = Viewing Frustum
e Objects outside the frustum are clipped

Near plane \ Far plane

Viewing Frustum

Setting up View Volume/Projection Type

e Previous OpenGL projection commands deprecated!!

e Perspective view volume/projection:

gluPerspective(fovy, aspect, near, far) or
glFrustum(left, right, bottom, top, near, far) X

e Orthographic: _
glortho(left, right, bottom, top, near, far) ‘%@g

X
e Useful functions, so we implement similar in mat.h:

Perspective(fovy, aspect, near, far) or
Frustum(left, right, bottom, top, near, far)

Ortho(left, right, bottom, top, near, far)\
\ What are these

arguments? Next!

Perspective(fovy, aspect, near, far)

e Aspect ratio used to calculate window width

. <—Ty < fovy

Aspect=w/h

Near plane

Frustum(left, right, bottom, top, near, far)

e Can use Frustrum() in place of Perspective()
e Same view volume shape, different arguments

left top

near and far measured from camera

Ortho(left, right, bottom, top, near, far)

e For orthographic projection

\\\\\\\\

near
far

near and far measured from camera

Example Usage:
Setting View Volume/Projection Type

void display(Q)

{

// clear screen
glClear(GL_COLOR_BUFFER_BIT);

// Set up camera position
LookAt(0,0,1,0,0,0,0,1,0);

// set up perspective transformation
Perspective(fovy, aspect, near, far);

// draw something
display all(); // your display routine

Perspective Projection

e After setting view volume, then projection
transformation

e Projection?
Classic: Converts 3D object to corresponding 2D on screen
How? Draw line from object to projection center

Calculate where each cuts projection plane
Projectors \

camera

¥ Object in 3 space

Projected image

S el .

projection plane % <~

VRP

Orthographic Projection

e How? Draw parallel lines from each object vertex
e The projection center is at infinite
e In short, use (x,y) coordinates, just drop z coordinates

Triangle
In 3D

Projection of
Triangle in 2D

Demo

e Nate Robbins demo on projection

Default View Volume/Projection?

e What if you user does not set up projection?
e Default OpenGL projection is orthogonal (Ortho());
e To project points within default view volume

< X
- O
[
o X

N
[

p

/N

Vertices before Vertices after
Projection Projection

Triangle

Projection of
Triangle in 2D n3b

Homogeneous Coordinate §§§:
Representation oo

default orthographic projection

Xp =X M
yp =Yy pp - P
z,=0 _ _
W, = 1 1 0 0 0
/ \ M = 00100) Default
Vertices before | | Vertices after 0 0 0 O Eﬂrggrei)c(:t'on
Projection Projection _O 0 0 1_

In practice, can let M =1, set the z term to zero later

The Problem with Classic Projection

e Keeps (x,y) coordintates for drawing, drops z
e We may need z. Why?

Projectors \

¥~ Object in 3 space

Projected image

Ao

VRP

Xp =X
yp —J : PR N VertexTriangle
Zy= 0 —_ Classic Projection Projection of n 3D

Loses z value Triangle in 2D

Normalization: Keeps z Value

e Most graphics systems use view normalization

e Normalization: convert all other projection types to
orthogonal projections with the default view volume

Perspective transform
matrix

% Default view volume

/ Clipping against it

Ortho transform
matrix

References

e Interactive Computer Graphics (6t edition), Angel and
Shreiner

e Computer Graphics using OpenGL (3 edition), Hill and Kelley

