BRDF Evolution

e BRDFs have evolved historically
e 1970’s: Empirical models
e Phong’s illumination model
e 1980s:
e Physically based models
e Microfacet models (e.g. Cook Torrance model)
e 1990’s

e Physically-based appearance models of specific effects (materials,
weathering, dust, etc)

e Early 2000’s

e Measurement & acquisition of static materials/lights (wood,
translucence, etc)

e Late 2000’s
e Measurement & acquisition of time-varying BRDFs (ripening, etc)

Physically-Based Shading Models

Phong model produces pretty pictures

Cons: empirical (fudged?) (cos%g), plastic look

Shaders can implement better lighting/shading models

Big trend towards Physically-based lighting models

Physically-based?
Based on physics of how light interacts with actual surface
Apply Optics/Physics theories

Classic: Cook-Torrance shading model (TOGS 1982)

Cook-Torrance Shading Model

e Same ambient and diffuse terms as Phong
e New, better specular component than (cos“%¢),

Cos” ¢ —>

e Where

D - Distribution term
G — Geometric term
F — Fresnel term

Distribution Term, D <

e lIdea: surfaces consist of small V-shaped microfacets (grooves)

\ 4 microfacets
Average
Incident \4\4\) normal n

e Many grooves at each surface point

e Grooves facing a direction contribute
e D(5) term: what fraction of grooves facing each angle &
e E.g. half of grooves at hit point face 30 degrees, etc

Cook-Torrance Shading Model

e Define angle 0 as deviation of h from surface normal
e Only microfacets with pointing along halfway vector, h =s + v, contributes

/1\

‘ \

e Can use old Phong cosine (cos"d), as D
e Use Beckmann distribution instead

1 _(tan(&)j2
4m? cos*(9) e’

e m expresses roughness of surface. How?

D(5) =

Cook-Torrance Shading Model

e m is Root-mean-square (RMS) of slope of V-groove
e m =0.2 for nearly smooth
e m = 0.6 for very rough

\/

Very rough Very smooth

surface _ surface
m is slope of groove

Self-Shadowing (G Term)

e Some grooves on extremely rough surface may b
other grooves

Without self-shadowing With self-shadowing

Geometric Term, G

e Surface may be so rough that interior of grooves is
blocked from light by edges

Self blocking known as shadowing or masking
Geometric term G accounts for this

Break G into 3 cases:

G, case a: No self-shadowing (light in-out unobstructed)

>

e Mathematically, G=1

Geometric Term, G

e G, case b: No blocking on entry, blocking of
exitting light (masking)

_2(n-h)(n-h)

Gm
h-s

e Mathematically,

Geometric Term, G

e G, case c: blocking of incident light, no blocking
of exitting light (shadowing)

e Mathematically,

_2(n-h)(n-h)

GS
h-s

e G term is minimum of 3 cases, hence

G=(G,.G;)

Fresnel Term, F
e So, again recall that specular term

F(¢,7)DG
(n-v)
e Microfacets not perfect mirrors
e Fterm, F(¢ n) gives fraction of incident light reflected

2
F = 1(90)2{:“ (C(g +C) _1j } F is function of material

- 2(g+c)? c(g—c)-1 and incident angle

SPEcC =

e wherec=cos(@)=n.sand g?=rn°*c?+1
e ¢isincident angle, ris refractive index of material

Other Physically-Based BRDF Models

e Oren-Nayar — Diffuse term changed not specular

e Aishikhminn-Shirley — Grooves not v-shaped. Other
Shapes

e Microfacet generator (Design your own microfacet)

BV BRDF Viewer

BRDF viewer (View distribution of light bounce)

4 | ¥ | BV Options | 1
Viewers Options
Hew Window
Tultiply by
~ 2D slices 4 LitSphere 27
~w Loganthi |+ cos(thetain) ~w cos(thetaing * cos(theta out)
3D view ~r Lit Plane ~ cos(theta out) -~ cos(thetain) + cos(theta out) Quit

4 | % | BRDF Parameter panel

[Lo1s [—{T# |

Surface roughness m

[150 | =TF | [0z {Ti=|
Real part Imaginary Part
Inclex of Refraction

Il T d |
[oeo | P, |

Specular reflectivity

Il I
| 040 | JI, |

Diffuse reflectivity

This is the Cook-Torrance —Sparrow BRDF, using a
Beckmann microfacet distribution function, Blinn‘s
geomettic shadowing term, and Fresnel reflection.
The parameters are the surface roughhess m {as used
i the Beckmann distribution), the index of refraction,
ahd the diffuse and specular reflectivities.

4 | % | BRDF Parameter panel

[| %|bv [0] (Ward sx=0.05, 5y=0.26, rs=0.05, rd=0.40) rotated by +000

[_oos [|={T¢ |
Surface roughhess in & direction

[0z | Lt |
Surface roughhess in Y direction

|_oos |7 |

Specular reflectivity

Il ' i |
[040 | {0k |

Diffuse reflectivity

COrientation

This is Greq Ward's Elliptical Gaussian BRDF.

It is predicted by a simple, but physically correct,
rough -surface madel, assuming different surface
roughness along the X and ¥ directions. Shadowing,
masking and Fresnel reflection are not included.

BRDF Evolution

e BRDFs have evolved historically
e 1970’s: Empirical models
e Phong’s illumination model
e 1980s:
e Physically based models
e Microfacet models (e.g. Cook Torrance model)
e 1990’s

e Physically-based appearance models of specific effects (materials,
weathering, dust, etc)

e Early 2000’s

e Measurement & acquisition of static materials/lights (wood,
translucence, etc)

e Late 2000’s
e Measurement & acquisition of time-varying BRDFs (ripening, etc)

Measuring BRDFs

Source Driver Hoop
s
‘ Light Source
%

c '-— Sample Area

*. -n_..,_,-\ Rotating Annuli

-n—. \

4

Reflectance Detector =,

P y—— e omm o= w2

Transmittance Detector

Murray-Coleman and Smith Gonioreflectometer. (Copied and Modified from [Ward92]).

Measured BRDF Samples °

e Mitsubishi Electric Research Lab (MERL)

http://www.merl.com/brdf/

e Wojciech Matusik i==EE=E===
e MIT PhD Thesis ﬂ-----ni'.
e 100 Samples 8. 0000
PeG. _S9Re.
¢de.=_0.._ 00
wilee W .6 _«
fuwuw 0200
Q. s BeE.
wBes _ & 0w

BRDF Evolution

BRDFs have evolved historically

1970’s: Empirical models

e Phong’s illumination model

1980s:

e Physically based models

e Microfacet models (e.g. Cook Torrance model)
1990’s

e Physically-based appearance models of specific effects (materials,
weathering, dust, etc)

Early 2000’s

e Measurement & acquisition of static materials/lights (wood,
translucence, etc)

Late 2000’s
e Measurement & acquisition of time-varying BRDFs (ripening, etc)

Time-varying BRDF s

e BRDF: How different materials reflect light
e Time varying?: how reflectance changes over time

Computer Graphics (CS 4731)
Lecture 19: Shadows and Fog

Prof Emmanuel Agu

Computer Science Dept.
Worcester Polytechnic Institute (WPI)

Introduction to Shadows °

e Shadows give information on relative positions of objects

Use ambient +
diffuse + specular Use just ambient
components component

Introduction to Shadows

e Two popular shadow rendering methods:
Shadows as texture (projection)
Shadow buffer

e Third method used in ray-tracing (covered in grad
class)

Projective Shadows :

e Oldest method: Used in early flight simulators
e Projection of polygon is polygon called shadow polygon

(> y1 Z/)

Actual polygon

- x_—~ Shadow polygon

Projective Shadows :

e Works for flat surfaces illuminated by point light
e For each face, project vertices V to find V’ of shadow polygon
e Object shadow = union of projections of faces

Tont

Projective Shadow Algorithm

e Project light-object edges onto plane
e Algorithm:

First, draw ground plane using specular+diffuse+ambient
components

Then, draw shadow projections (face by face) using only
ambient component

Projective Shadows for Polygon

1. Iflightis at(x, vy, z)

2. Vertexat(x,vy, z)

3. Would like to calculate shadow polygon vertex V projected
onto ground at (x,, 0, z,)

(x1. yi. z)

<

(x,5,2)

= X(xp, 0,z,)

Ground plane: y =0

Projective Shadows for Polygon

e |f we move original polygon so that light source is at origin

e Matrix M projects a vertex V to give y
A

its projection V' in shadow polygon

<

Il
o o o
ro m o
o O O
O O o o

|
<

Building Shadow Projection Matrix

1. Translate source to origin with T(-x,, -y, -z,)
2. Perspective projection
3. Translate back by T(x, y,, z))

100 x]t % % %100 —x

M201Oy,8(1)(1)8010—y,

0 0 1 gz 1 0 0 1 -z

_0001_0W00_0001_
u | _

\ Final matrix that projects

Vertex V onto V'’ in shadow polygon

Code snippets?

e Set up projection matrix in OpenGL application

float light[3]; 7/ location of light
mat4 m; // shadow projection matrix initially i1dentity

M[3][1] = -1.0/1ight[1];

<

Il
o O O K
ro ~ o
o B O O
o o o o

|
<

Projective Shadow Code

e Set up object (e.g a square) to be drawn

point4 square[4] = {vec4(-0.5, 0.5, -0.5, 1.0}
{vec4(-0.5, 0.5, -0.5, 1.0}
{vec4(-0.5, 0.5, -0.5, 1.0}
{vec4(-0.5, 0.5, -0.5, 1.0}

e Copy square to VBO
e Pass modelview, projection matrices to vertex shader

What next?

e Next, we load model_view as usual then draw
original polygon

e Then load shadow projection matrix, change color to
black, re-render polygon

(X1, y1, z1)

>

1. Load modelview
draw polygon as usual

N\ — x 2. Modify modelview with
Shadow projection matrix
Re-render as black (or ambient)

Shadow projection Display() Function | ¢

void display()
{
mat4 mm;
// clear the window
glClear(GL_COLOR _BUFFER _BIT | GL DEPTH BUFFER_BIT);

// render red square (original square) using modelview
// matrix as usual (previously set up)
gluniformdafv(color_loc, 1, red);
glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);

Shadow projection Display() Function

// modify modelview matrix to project square
// and send modified model view matrix to shader
mm = model view
* Translate(light[0], light[1l], light[2]
*m
* Translate(-light[0], -light[1])\ -light[2]);
gluniformMatrix4fv(matrix_loc, 1, GL_TRYE, mm);

//and re-render square as

// black square (or using only ambient component)
gluniformdafv(color_loc, 1, black);
glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
glutSwapBuffers();

o O O
=<

1

o O o -

o » O O

© © o o

o O O k-

o O~ O

o B, O O

Shadow Buffer Approach

e Uses second depth buffer called shadow buffer
e Pros: not limited to plane surfaces

e Cons: needs lots of memory
e Depth buffer?

OpenGL Depth Buffer (Z Buffer) :

e Depth: While drawing objects, depth buffer stores
distance of each polygon from viewer

e Why? If multiple polygons overlap a pixel, only
closest one polygon is drawn
Depth

1 Z:0.5‘4

10 | 1.0] 1.0 | 1.0 | o
10 |03 | 03] 1.0 T

“ | 1.0 ‘
: 1.0 eye

Setting up OpenGL Depth Buffer :

Note: You did this in order to draw solid cube, meshes

glutinitDisplayMode(GLUT_DEPTH | GLUT _RGB)
instructs openGL to create depth buffer

glEnable(GL DEPTH TEST) enables depth testing

glClear(GL_COLOR BUFFER BIT |
GL_DEPTH_BUFFER BIT)

Initializes depth buffer every time we draw a new picture

Shadow Buffer Theory

e Along each path from light
e Only closest object is lit
e Other objects on that path in shadow

e Shadow buffer stores closest object on each path

source shadow
buffer

a:.:-.-

< ,screen and
/ depth buffer

In shadow

Shadow Buffer Approach

e Rendering in two stages:
e Loading shadow buffer
e Render the scene

Loading Shadow Buffer :

e Initialize each element to 1.0

e Position a camera at light source

e Rasterize each face in scene updating closest object
e Shadow buffer tracks smallest depth on each path

SOUrce shadow
/ﬂ buffer
!/ ,,f,-" ;)] ._.J,--" ’/"\;L‘I‘L‘L_"]-] nl]LI
L,/’ P / depth buffer
/: \ P

Shadow Buffer (Rendering Scene)

e Render scene using camera as usual

e While rendering a pixel find:
pseudo-depth D from light source to P
Index location [i][j] in shadow buffer, to be tested
Value d[i][j] stored in shadow buffer
e If d[i][j] < D (other object on this path closer to light)
point P is in shadow
set lighting using only ambient

e Otherwise, not in shadow

Loading Shadow Buffer -

e Shadow buffer calculation is independent of eye
position

e |In animations, shadow buffer loaded once

e If eye moves, no need for recalculation

e If objects move, recalculation required

SOUTCE shadow
/{ buffer
") o
r/ vd B <, ,screen and
|~ A / depth buffer

Other Issues

e Point light sources => simple hard shadows, unrealistic
e Extended light sources => more realistic
e Shadow has two parts:

e Umbra (Inner part) => no light

e Penumbra (outer part) => some light

References

e Interactive Computer Graphics (6t edition), Angel
and Shreiner

e Computer Graphics using OpenGL (3™ edition), Hill
and Kelley

e Real Time Rendering by Akenine-Moller, Haines and
Hoffman

