Computer Graphics (CS 4731
Lecture 22: 3D Clippin

Prof Emmanuel Agu

Computer Science Dept.
Worcester Polytechnic Institute (WPI)

Liang-Barsky 3D Clipping

Goal: Clip object edge-by-edge against Canonical View

volume (CVV)
Problem:

2 end-points of edge: A = (Ax, Ay, Az, Aw)and C = (Cx, Cy, Cz, Cw)
If edge intersects with CVV, compute intersection point | =(Ix,ly,l1z,lw)

' ™ (
Py Y,

A ~ Iy

\ -~

Determining if point is inside CVV

Problem: Determine if point
(X,y,2) is inside or outside CVV?

y=1
o
® Point (x,y,z) is inside CVV if
o (-l<=x<=1)
______ y=-1 o and (-1 <=y <= 1)

and (-l<=z<=1)

x=1 else point is outside CVV

CVV == 6 infinite planes (x=-1,1; y=-1,1; z=-1,1)

Determining if point is inside CVV | :

|
: If point specified as (X,y,z,w)
|

yw =1 - Test (x/w, y/w, z/w)!
o
o
® Point (x/w, y/w, z/w) is inside CVV
yw = -1

if (-1 <= x/w <=1)
and (-1 <= y/w <=1)
XW=1 land (-1<= z/w <=1)

else point is outside CVV

Modify Inside/Outside Tests Slightly | ¢

yw =1
[
®
yw = -1
______ | |
| |
xw = -1 E E

Our test: (-1 < x/w <1)

Point (X,y,z,w) inside plane x = 1 if

x/w <1

== w-X=>0

Point (x,y,z,w) inside plane x = -1 if

-1 < x/w
== wW+X=>0

Numerical Example: Inside/Outside CVV Test | ©

Point (x,y,z,w) IS
Inside plane x=-1 if w+x >0
Inside plane x=1 ifw—-x>0

-1 1

Example Point (0.5, 0.2, 0.7) inside planes (x =-1,1) because - 1 <=0.5<=1

Ifw=10, (0.5,0.2,0.7) = (5,2,7,10)

Can either divide by w thentest: —1<=5/10<=1 OR
Totestifinside x=-1, w+x= 10+5=15 > O
Totestifinside x=1, w-x= 10-5=5 > 0

3D Clipping

Do same for y, z to form boundary coordinates for 6 planes as:

Boundary Homogenous | Clip plane | Example
coordinate (BC) coordinate (5,2,7,10)
BCO wW—+X X=-1 15

BC1 W-X x=1 5

BC2 w+y =-1 12

BC3 wW-y y=1 8

BC4 W—+z z=-1 17

BC5 wW-Z z=1 3

*Consider line that goes from point A to C

= Trivial accept: 12 BCs (6 for pt. A, 6 for pt. C) >0

= Trivial reject: Both endpoints outside (-ve) for same plane

Edges as Parametric Equations

e Implicitform F(X,y)=0

e Parametric forms:
points specified based on single parameter value
Typical parameter: time t

P(t) = P, + (P — P,)*t 0<t<1

e Some algorithms work in parametric form
Clipping: exclude line segment ranges
Animation: Interpolate between endpoints by varying t

e Represent each edge parametrically as A + (C— A)t
at time t=0, point at A
at time t=1, point at C

Inside/outside?

Test A, C against 6 walls (x=-1,1; y=-1,1; z=-1,1)

There is an intersection if BCs have opposite signs. i.e. if either
A is outside (< 0), Cis inside (>0) or
A inside (> 0), C outside (< 0)

Edge intersects with plane at some t_hit between [0,1]

A .
i C \ t_hit
t hit / t=0 _

Calculating hit time (t_hit) °

How to calculate t_hit?
Represent an edge t as:
Edge(t) = ((Ax+ (Cx — Ax)t, (Ay + (Cy — Ay)t, (Az + (Cz — A2)t, (Aw + (Cw — Aw)t)

E.g.lfx=1, Ax+ (Cx — Ax)t 1
Aw + (Cw— Aw)t

Solving for t above,

. Aw — AX
(Aw— Ax) — (Cw—Cx)

Inside/outside?

t_hit can be “entering (t_in)” or ”leaving (t_out)”
Define: “entering” if A outside, Cinside
Why? As t goes [0-1], edge goes from outside (at A) to inside (at C)

Define “leaving” if A inside, C outside

Why? As t goes [0-1], edge goes from inside (at A) to inside (at C)

Entering Leaving

- C A

Chop step by Step against 6 planes | :

tin=0, tout=1
Candidate Interval (Cl) = [0 to 1]

Initially

.

t=20

Chop against each of 6 planes
t out=0.74 Planey =1

e

tin=0, tout=0.74
Candidate Interval (Cl) = [0 to 0.74] N Why t_out?

Chop step by Step against 6 planes | :

Initially i

t_out = 0.74
/c
tin=0, tout=0.74
A Candidate Interval (Cl) = [0 to 0.74]
t=20
Then E Plane x = -1

t out =0.74

t_in=0.36 /C

A t in=0.36, tout=0.74
Candidate Interval (Cl) CI =[0.36 to 0.74]

Why t_in?

Candidate Interval

Candidate Interval (Cl): time interval during which edge might still
be inside CVV.i.e.Cl=t_intot_out

Initialize Cl to [0,1]

For each of 6 planes, calculate t_in or t_out, shrink CI

0 Cl 1

—I—ﬁ—'—) t
t in t out

Conversely: values of t outside Cl = edge is outside CVV

Shortening Candidate Interval

Algorithm:
Test for trivial accept/reject (stop if either occurs)
Set Cl to [0,1]
For each of 6 planes:
Find hit time t_hit
Ift_in, newt_in =max(t_in,t_hit)
If t out, new t_out = min(t_out, t_hit)
If t_In >t _out => exit (no valid intersections)

Cl

] | | t
0 t_in t_out 1

Note: seeking smallest valid Cl without t_in crossing t _out

Calculate choppped A and C

e Ifvalidt in, t out, calculate adjusted edge endpoints A, C as

e A chop=A+t in(C—A) (calculate for Ax,Ay, Az)
e C chop=A+t out(C—A) (calculate for Cx,Cy,Cz)

O A _chop Cl C_chop 1
—I—ﬁ—'—) t
t in t out

| \

3D Clipping Implementation

e Function clipEdge()
e Input: two points A and C (in homogenous coordinates)
e Output:
e 0,if AClies complete outside CVV
e 1, complete inside CVV
e Returns clipped A and C otherwise
e Calculate 6 BCs for A, 6 for C

A 0
ClipEdge () 1

A _chop, C_chop

Store BCs as Outcodes e

e Use outcodes to track in/out
e Numberwallsx=+1,-1;y=+1,-1,andz=+1,-1as0to 5
e Bitjof A’s outcode = 1 if A is outside ith wall
e 1 otherwise

e Example: outcode for point outside walls 1, 2, 5

Wall no. 0] 1 2 3 4 5
OutCode |0 1 1 0] 0 1

Trivial Accept/Reject using Outcodes | :

e Trivial accept: inside (not outside) any walls

wall no. |© 1 2 3 4 o
A Outcode | O 0] 0] O 0 0]

C OutCode |0 0 0] 0] 0] 0

Logical bitwise test: A | C ==

e Trivial reject: point outside same wall. Example Both A and C outside wall 1

wall no. |© 1 2 3 4 S
A Outcode | O 1 0] 0] 1 0
C OutCode | O 1 1 0] 0 0

Logical bitwise test: A&C!'=0

3D Clipping Implementation

e Compute BCs for A,C store as outcodes
e Test A, C outcodes for trivial accept, trivial reject
e |f not trivial accept/reject, for each wall:
Compute tHit
Update t_in, t out
If t_in >t _out, early exit

3D Clipping Pseudocode

int clipEdge(Point4& A, Point4& ()

{
double tin = 0.0, tOut = 1.0, tHit;

double aBC[6], cBC[6];
int aOutcode = 0, cOutcode = 0;

..... find BCs for Aand C
..... form outcodes for A and C

if((aOutCode & cOutcode) !=0) // trivial reject
return O;

if((aOutCode | cOutcode) == 0) // trivial accept
return 1;

3D Clipping Pseudocode

for(i=0;i<6;i++) // clip against each plane

{
if(cBC[i] < 0) // Cis outside wall i (exit so tOut)
{
tHit = aBC[i]/(aBC[i] — cBC[l]),. // calculate tHit
tOut = MIN(tOut, tHit); \t _ Aw — AX
} (Aw — Ax) — (Cw—Cx)
else if(aBC[i] < 0) // A is outside wall | (enters
{
tHit = aBC[i]/(aBC[i] — cBC[i]) // calculate tHit
tin = MAX(tln, tHit);
}

if(tIn > tOut) return 0; // Cl is empty: early out

3D Clipping Pseudocode

Point4 tmp; // stores homogeneous coordinates
If(aOutcode !=0) // A is outside: tIn has changed. Calculate A_chop
{

tmp.x = A.x +tIn * (C.x = A.x);

// do same fory, z, and w components

}
If(cOutcode !=0) // Cis outside: tOut has changed. Calculate C_chop

{
C.x = A.x + tOut * (C.x — A.x);

// do same for y, zand w components

}

A =tmp;

Return 1; // some of the edges lie inside CVV
}

Polygon Clipping

e Not as simple as line segment clipping

Clipping a line segment yields at most one line
segment

Clipping a polygon can yield multiple polygons

7N /N
ZL L

e Clipping a convex polygon can yield at most one
other polygon

24

Clipping Polygons °

e Need more sophisticated algorithms to handle
polygons:

o Sutherland-Hodgman: any a given polygon against a
convex clip polygon (or window)

o Weiler-Atherton: Both subject polygon and clip
polygon can be concave

Tessellation and Convexity o

One strategy is to replace nonconvex (concave)
polygons with a set of triangular polygons (a
tessellation)

Also makes fill easier

26

References

e Angel and Shreiner, Interactive Computer Graphics,
6th edition

e Hill and Kelley, Computer Graphics using OpenGL, 3"
edition

