Painter’s HSR Algorithm

e Render polygons farthest to nearest
e Similar to painter layers oil paint

naw

Viewer sees B behind A Render B then A

Depth Sort

e Requires sorting polygons (based on depth)
O(n log n) complexity to sort n polygon depths

Not every polygon is clearly in front or behind other

polygons
A

T -

Zmax

i I szin
Polygons sorted by £ E p

distance from COP Palygons -

Distance from COP

Easy Cases

e Case a: A lies behind all polygons “ @

Distance from COP

1
e
-
e
O
=

Polygons

e Case b: Polygons overlap inzbut notinxory

Hard Cases 333
VA i
o

cyclic overlap

Overlap in (x,y) and z ranges

penetration

Back Face Culling

e Back faces: faces of opaque object that are “pointing
away” from viewer

e Back face culling: do not draw back faces (saves

resources)
Back face @
AVANEE

e How to detect back faces?

Back Face Culling

e Goal: Testis a face F is is backface
e How? Form vectors

View vector, V

Normal N to face F

o . &

V

Backface test: F is backface if N.V < O why??

Back Face Culling: Draw mesh front faces

void drawFrontFaces()

{

for(int f = 0;f < numFaces; f++)

{

if(isBackFace(f,) continue; < ITN.V<O
gIDrawArrays(GL_POLYGON, 0, N);

View-Frustum Culling

Goal: Remove objects outside view frustum
Done by 3D clipping algorithm (e.g. Liang-Barsky)

Clippec e
—

Not Clipped

Ray Tracing

e Ray tracing is another image space method

e Ray tracing: Cast a ray from eye through each
pixel into world.

e Ray tracing algorithm figures out: what object
seen in direction through given pixel?

N
N

N
A\

=

A

oK
<‘<

-

><

VAV

P 4

Topic of grad class

Combined z-buffer and Gouraud Shading (Hill) | ¢

e Can combine shading and hsr through scan line algorithm

for(int y = ybott; y <= ytop; y++) // for each scan line
{

for(each polygon){

find xleft and xright

find dleft, dright, and dinc

find colorleft and colorright, and colorinc

for(int x = xleft, c = colorleft, d = dleft; x <= xright;

4 color3
X++, c+= colorinc, d+= dinc) ytop

if(d < d[x][y]) color

{ ye lor2
put c into the pixel at (x, y) color
d[x][y] = d; // update closest depth ysS

} ybott

} colorl

xleft xright

v

Computer Graphics (CS 4731)
Lecture 24: Rasterization: Line Drawing

Prof Emmanuel Agu

Computer Science Dept.
Worcester Polytechnic Institute (WPI)

Rasterization o

e Rasterization produces set of fragments
e Implemented by graphics hardware

e Rasterization algorithms for primitives (e.g lines,
circles, triangles, polygons)

Rasterization: Determine Pixels

(fragments) each primitive covers

7|\
N

Fragments

Line drawing algorithm

e Programmer specifies (x,y) of end pixels

e Need algorithm to determine pixels on line path

RPN WSO N0

(919)

(3{2)L_~

0123 4567389 101112

Line: (3,2) -> (9,6)

Which intermediate
pixels to turn on?

Line drawing algorithm °

e Pixel (x,y) values constrained to integer values
e Computed intermediate values may be floats

e Rounding may be required. E.g. (10.48, 20.51) rounded to
(10, 21)

e Rounded pixel value is off actual line path (jaggy!!)
e Sloped lines end up having jaggies
e Vertical, horizontal lines, no jaggies

a) b)

:__ — - | | - ..! 1 -
i naaEERREE

| / CET T =
) i 30 Y i ==

000
o0
o
Line Drawing Algorithm
e Slope-intercept line equation
yv=mx+Db
Given 2 end points (x0,y0), (x1, y1), how to
compute m and b?
m:dy:yl—yO yO=m*x0+Db
dx x1-x0 =b=y0-m*x0
(X2!)’2)
/,/ i(xl,yl)
/| |4y dy
)4
/(X]z I)ﬁ) (XO’yO) dx
- A.X -

Line Drawing Algorithm

e Numerical example of finding slope m:
o (Ax, Ay) = (23, 41), (Bx, By) = (125, 96)

(125,96)

dy
(23,41)

_By—Ay 96-41 55

m = — —
Bx—Ax 125-23 102

=0.5392

Digital Differential Analyzer (DDA): oes
Line Drawing Algorithm

Consider slope of line, m:

A

(x0,y0)

v

Step through line, starting at (x0,y0)
Case a: (m < 1) x incrementing faster

Step in x=1 increments, compute y (a fraction) and round
Case b: (m > 1) y incrementing faster

Step in y=1 increments, compute x (a fraction) and round

DDA Line Drawing Algorithm (Case a: m < 1)

_ Ay _ Y = Yo — Yin = Y

m
AX' X = X,

= Ya =Yt

1

(x1,y1)

“.'%

>

N

\ (X0, y0)

X = X0 y=y0
llluminate pixel (x, round(y))

X=x+1 y=y+ m
llluminate pixel (x, round(y))
X=X+1 y=y+ m

llluminate pixel (x, round(y))

Until x == x1

Example, if first end point is (0,0)
Example, if m = 0.2

Step1l: x =1,y = 0.2 => shade (1,0)
Step 2: x =2,y = 0.4 => shade (2, 0)
Step 3: x= 3,y = 0.6 => shade (3, 1)
... etc

DDA Line Drawing Algorithm (Case b: m > 1)

_ﬂZYkﬂ_yk_ 1

m

AX X =X X =X
= X, =X -I——l
k+1 = Mk
' m

(x1,y1)

r'd

——

-

(x0,y0)

X = x0 y =y0
llluminate pixel (round(x), y)

y=y+1 X=X+ 1/m
llluminate pixel (round(x), y)

llluminate pixel (round(x), y)

Untily ==vy1

Example, if first end point is (0,0)

if 1/m = 0.2

Stepl:y =1, x=0.2 =>shade (0,1)
Step 2: y =2, x = 0.4 => shade (0, 2)
Step 3: y= 3, x = 0.6 => shade (1, 3)
... etc

DDA Line Drawing Algorithm Pseudocode | °©

compute m;
ifm< 1:
{
float y = y0; // initial value
for(int x = x0; X <= x1; Xx++, y +=m)
setPixel(x, round(y)):;

+
else // m>1
{
float x = x0; // initial value
for(int y =y0; vy <=yl; y++t, X += 1/m)
setPixel(round(xX), Yy):;
+

e Note: setPixel (X, Yy) writes current color into pixel in column x and row
y in frame buffer

Line Drawing Algorithm Drawbacks

e DDA is the simplest line drawing algorithm

Not very efficient
Round operation is expensive

e Optimized algorithms typically used.

Integer DDA
E.g.Bresenham algorithm

e Bresenham algorithm
Incremental algorithm: current value uses previous value
Integers only: avoid floating point arithmetic

Several versions of algorithm: we’ll describe midpoint
version of algorithm

Bresenham’s Line-Drawing Algorithm | ¢

e Problem: Given endpoints (Ax, Ay) and (Bx, By) of line,
determine intervening pixels

e First make two simplifying assumptions (remove later):
e (Ax < Bx)and
e (O<mx<1)

e Define
: (Bx,By)
e Width W = Bx — Ax
e Height H=By- Ay H

(AX,Ay)

Bresenham’s Line-Drawing Algorithm

(Bx,By)

H

(AX,Ay) W

e Based on assumptions (Ax < Bx) and (0 < m < 1)
W, H are +ve
H<W

e Increment x by +1, y incr by +1 or stays same

e Midpoint algorithm determines which happens

Bresenham’s Line-Drawing Algorithm

What Pixels to turn on or off?

Consider pixel midpoint M(Mx, My) = (x + 1,y + %)
Build equation of actual line, compare to midpoint

(x1,y1)
/

Case a: If midpoint (red dot) is below line,

L]] -
/4/u/ Shade upper pixel, (x +1,y +1)
/D«_ (Xl,yl)

._Case b: If midpoint (red dot) is above line,

Shade lower pixel, (x + 1, y)

Build Equation of the Line

(Bx,By)
e Using similar triangles: (X,y H
y—Ay H
x—Ax W (Ax,Ay) W

H(x — Ax) = W(y — Ay)
-W(y —Ay) + H(x—Ax) =0

e Above is equation of line from (Ax, Ay) to (Bx, By)
e Thus, any point (x,y) that lies on ideal line makes eqn =0
e Double expression (to avoid floats later), and call it F(x,y)

F(x,y) = -2W(y — Ay) + 2H(x — Ax)

Bresenham’s Line-Drawing Algorithm | ¢

e So, F(x,y) =-2W(y — Ay) + 2H(x — Ax)

e Algorithm, If:
e F(x,y) <0, (x,y) above line
e F(x,y) >0, (x,y) below line

e Hint: F(x, y) =0isonline

e Increase y keeping x constant, F(x, y) becomes more
negative

Bresenham’s Line-Drawing Algorithm

e Example: to find line segment between (3, 7) and (9, 11)

F(x,y) = -2W(y — Ay) + 2H(x — Ax)
=(-12)(y —7) + (8)(x— 3)

e For points on line. E.g. (7, 29/3), F(x, y) =0

e A=(4,4)lies below line since F = 44 (5,9)
e B=(5,9)lies above line since F = -8 a
L]
L]

(4.4)

Bresenham’s Line-Drawing Algorithm

What Pixels to turn on or off?

Consider pixel midpoint M(Mx, My) = (x0 + 1, YO + }%)

(x1,y1)

Case a: If M below actual line

[] et FVx, My) >0

I shade upper pixel (x + 1,y + 1)
=n
P2e M(NIX, My)

~J] Case b: If M above actual line

SF(Mx,My) < 0

(x0, y0) shade lower pixel (x + 1,y + 1)

Can compute F(x,y) incrementally

Initially, midpoint M = (Ax + 1, Ay + }4)
F(Mx, My) = -2W(y — Ay) + 2H(x — Ax)

i.,e. F(Ax+1,Ay+%)=2H-W

Can compute F(x,y) for next midpoint incrementally

If we increment to (x + 1, y), compute new F(Mx,My)

F(Mx, My) += 2H

(AX + 2, Ay + 12)

i.e. F(AX + 2, Ay + %)

V

\

W

-F(Ax + 1, Ay + %)

= 2H

]
B
]

(Ax + 1, Ay + 12)

Can compute F(x,y) incrementally

If we incrementto (x+1,y+1)
F(Mx, My) += 2(H — W)
(Ax + 2, Ay + 3/2)

i.e. F(Ax +2, Ay +3/2) -F(Ax+ 1, Ay + %) =2(H-W) //
pd

/

v ~
- ASEERE N

(Ax + 1, Ay + 12)

Bresenham’s Line-Drawing Algorithm

Bresenham(IntPoint a, InPoint b)

{ // restriction: a.x<b.xand 0 <H/W <1
inty=a.y, W=b.x-a.x, H=b.y-a.y;
intF=2*H-W,; //current error term
for(int x =a.x; x<=b.x; x++)

{
setpixel at (x, y); // to desired color value
ifF<0 // y stays same
F=F+2H;
else{
Y++, F=F +2(H-W) //incrementy
}
}

}

e Recall: Fis equation of line

Bresenham’s Line-Drawing Algorithm

e Final words: we developed algorithm with restrictions
O0<m<1andAx< Bx

e Can add code to remove restrictions
When Ax > Bx (swap and draw)
Lines having m > 1 (interchange x with y)
Lines with m < 0 (step x++, decrement y not incr)

Horizontal and vertical lines (pretest a.x = b.x and skip
tests)

References

e Angel and Shreiner, Interactive Computer Graphics,
6th edition

e Hill and Kelley, Computer Graphics using OpenGL, 3"
edition, Chapter 9

