CS 525M – Mobile and Ubiquitous Computing Seminar

Ted Goodwin

Sergio Marti, T.J. Giuli, Kevin Lai, and Mary Baker

Department of Computer Science Stanford University Stanford, CA 94305 U.S.A

Contents

- Introduction
- Assumptions And Background
- Watchdog and Pathrater
- Methodology
- Simulation Results
- Related Work
- Future Work
- Conclusion

Introduction

- Ad Hoc Networks
 - Ideal for when network is too transient or infrastructure is destroyed.
 - Maximize throughput by using all nodes for routing and forwarding.
 - Misbehaving nodes cause problems.
 - Overloaded lacks cpu cycles, buffer space, or network bandwidth to forward packets.
 - Selfish unwilling to spend battery life, CPU cycles, or network bandwidth.
 - Malicious drops packets for denial of service attack.
 - Broken software fault keeps from forwarding packets.

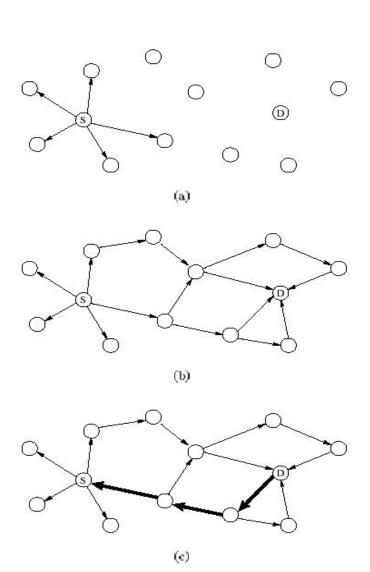
Introduction (cont.)

- Solution to misbehaving nodes
 - Priori trust relationship: separate relationship outside of network
 - Problems:
 - Requires key distribution.
 - Trusted nodes overloaded.
 - Trusted nodes can be compromised.
 - Untrusted nodes may be well behaved.
 - Isolate or forestall misbehaving nodes
 - Problems:
 - Complexity added to well defined protocols.
 - Many existing ad Hoc networks admit misbehavior.

Introduction (cont.)

- Solutions to misbehaving nodes:
 - Priori trust relationship separate relationship outside of network
 - Problems:
 - Requires key distribution
 - Trusted nodes overloaded
 - Trusted nodes can be compromised
 - Untrusted nodes may be well behaved
 - Isolate or forestall misbehaving nodes
 - Problems:
 - Complexity added to well defined protocols.
 - Many existing ad Hoc networks admit misbehavior.

Introduction (concl.)


- Paper's solution Watchdog and Pathrater added to network.
 - Watchdog identifies misbehaving nodes.
 - Node A sends a packet to Node B.
 - Node A Watchdog listens promiscuously to Node B to ensure it forwards the packet.
 - If Node B does not, Watchdog identifies it as misbehaving.
 - Pathrater avoids routing packets through misbehaving nodes.

Assumptions and Background

- Definitions
 - neighbor node within wireless transition of another node
 - neighborhood all nodes that are within wireless transmission range of a node
- Physical Layer Characteristics
 - Bidirectional links between all nodes (Watchdog relies on bidirectional links).
 - Promiscuous mode supported by all nodes.
- Dynamic Source Routing (DSR) On-demand source routing protocol
 - Route path each packet has the addresses of nodes agreed to participate in routing packet.
 - "On demand" route paths are discovered when there is no path to a destination.

Assumptions and Background (cont.)

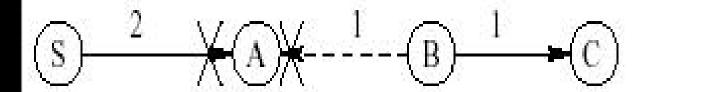
- DSR route discovery
- From S (source) to D (destination)
- S sends Route Request
- Request is forwarded, adding their address building a route.
- D returns Route Reply using a route in a Route Request packet or do its own route discovery back.
- S caches multiple paths from destination for later.

Assumptions and Background (concl.)

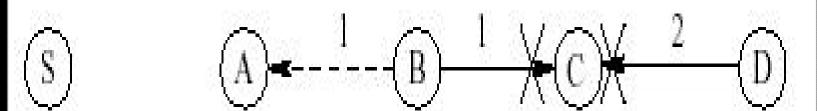
- DSR route maintenance
 - Link breaks Two nodes are no longer in transmission range of each other.
 - If an intermediate node detects a link break during forwarding, it notifies source.
 - Source either tries another path or does a route discovery.

Watchdog and Pathrater

- Watchdog checks for misbehaving nodes.
- Below, A sends a packet to B to be forwarded to C.
- A then listens to B to make sure it forwards the packet to C.
- •If packets are not encrypted individually, can check for tampering.



(D)


- Watchdog
 - Maintains a buffer of recently sent packets.
 - Compares each overheard packet with the buffer.
 - If overheard packet is in buffer, remove it.
 - If not, wait for a timeout, then increase tally for that node.
 - If that node's tally reaches a certain threshold, mark it as misbehaving.
 - If misbehaving, notify the source of the misbehaving node.

- Watchdog (cont.)
 - Advantages:
 - Detects errors at the forwarding level, not just the link level.
 - Disadvantages:
 - May not detect misbehaving nodes when:
 - Ambiguous collisions
 - Receiver collisions
 - Limited Transmission power
 - False misbehavior
 - Collusion
 - Partial dropping

- •Watchdog Disadvantages
 - Ambiguous collisions
 - Node A listens for Node B to forward packet 1 to Node C.
 - Packet 1 from Node B and packet 2 from Node S collide at Node A.
 - Node A cannot tell in this instance if B is misbehaving or not.
 - Keep listening to Node B to see if it is misbehaving.

- Watchdog Disadvantages (cont.)
 - Receiver collisions
 - Node A knows Node B forwarded the packet, but does not know if Node C receives it.
 - Node B could refuse to resend the packet to Node C, because it does not want to waste resources to resend.
 - Node B could also wait until Node C is sending to cause a collision. This would be malicious behavior.

- Watchdog Disadvantages (cont.)
 - Falsely misbehaving
 - If nodes falsely accuse the node they forwarded the packet to as misbehaving.
 - Should be caught, because the source will receive packets back from the destination.
 - If the accusing nodes start dropping the return nodes, the accused would inform the destination and it would reroute.

- Watchdog Disadvantages (cont.)
 - Limited transmission power
 - Signal strength is manipulated
 - -Previous node can hear forward.
 - -Next node can not hear forward.
 - The node must know the signal power to reach the others.
 - (Directional transmission could cause the same problem.)

- Watchdog Disadvantages (cont.)
 - Collusion
 - If two nodes in a row collude, you can fool Watchdog.
 - Node A sends a packet to colluding Node B.
 - Node B forwards the packet to other colluding Node C.
 - Node C drops the packet and Node B does not report it.
 - Do not have two untrusted nodes in a row in a path.
 - This paper assumes nodes act by themselves.

- Watchdog Disadvantages (concl.)
 - Partial droppings
 - Node keeps its tally just below the threshold.
 - Never is labeled as misbehaving.
 - Replay attacks
 - Ineffective dealing with replay attacks.
 - Too much state information at each node.
 - Retransmits could be seen as replay attacks.

- Pathrater
 - Run by each node.
 - Misbehaving nodes + link reliability data to pick route.
 - Each node keeps a metric for each node it knows about.
 - Path is chosen by averaging the metric for each node.
 - Highest average metric is chosen.

- Pathrater Assigning Ratings to other nodes
 - Starts with neutral rating (0.5) at discovery.
 - At periodic intervals (200 ms), increment nodes on active paths (0.01).
 - Decrement the rating when link breaks occur.
 - Misbehaving nodes set to -100.
 - If a node on a path misbehaves and there no other paths, sends a Route Request.

Methodology

- The paper used Berkeley's Network Simulator with CMUs Monarch project plugin, and CMU's ad-hockey to visualize the network data.
- The simulation was of 50 wireless nodes in a flat space measuring 670 x 670 meters.

Methodology (cont.)

- Movement and Communication Patterns
 - 10 constant Bit rate connections.
 - 4 nodes source 2 connections.
 - 2 nodes source 1 connection.
 - 8 nodes destination 1 connection.
 - The last is a destination for 2 connections.

Methodology (cont.)

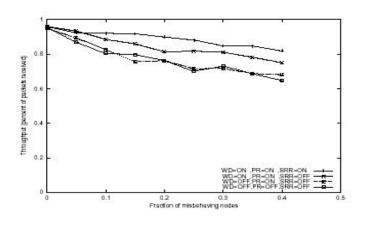
- Movement and Communication Patterns (concl.)
 - Random waypoint model
 - Pick destination and move in straight line.
 - Move at constant rate of 0 or a maximum speed.
 - Pause time of 0 or 60 seconds.
 - Gives 4 mobility scenarios.

Methodology (cont.)

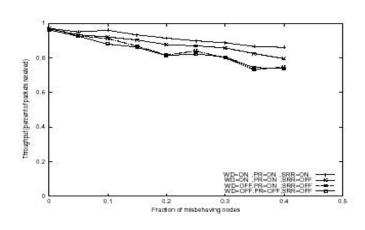
- Misbehaving Nodes
 - Agree to participate in forwarding packets.
 - Drops all data routed through it.
 - Percentage of the network
 - Between 0 and 40 percent by
 5 percent increments.
 - Picked pseudo randomly.

Methodology (concl.)

- Metrics
 - Throughput Percentage of sent data received.
 - Overhead Ratio of routing related transmissions to data transmissions.
 - Effects of Watchdog false positives on throughput.


Simulation Results

- Network Throughput
 - Watchdog, Pathrater, and SRR enabled.
 - Everything disabled.
 - Watchdog and Pathrater enabled.
 - Only Pathrater enabled.
 - Watchdog and SRR will not work without
 Pathrater to use the information.

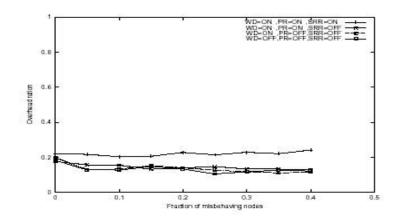

Simulation Results (cont.)

Network Throughput (concl.)

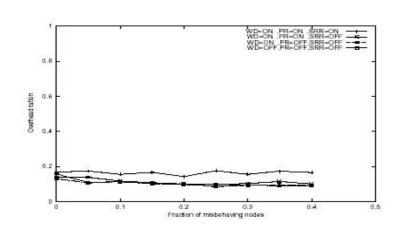
- •Fraction of data generated received versus Fraction of misbehaving Nodes.
- •0% Misbehaving all were 95% throughput.
- •Up to 27% increase compared to basic protocol.
- •Subset of extensions do not improve as much.

(a) 0 second pause time

(b) 60 second pause time


Simulation Results (cont.)

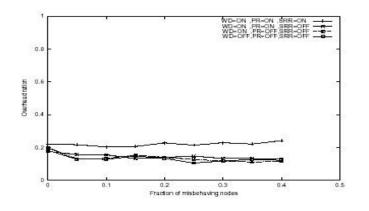
- Routing Overhead
 - Everything enabled.
 - Pathrater and Watchdog enabled.
 - Watchdog enabled.
 - Everything disabled.


Simulation Results (cont.)

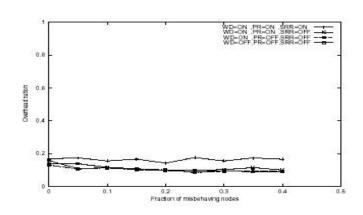
Routing Overhead (concl.)

- •Ratio of routing to data packets versus fraction of misbehaving nodes.
- •40% misbehaving overhead rises from 12 to 24% with SRR.
- •Watchdog has very little overhead.

(a) 0 second pause time



(b) 60 second pause time


Simulation Results (concl.)

Effects of False Detection

- •Network throughput of Regular Watchdog versus a Watchdog no false positives.
- •False positives have no effect on throughput.
- •Misbehaving nodes could have moved out of range.
- •Increased false positives increase suspect nodes, so it evens out.

(a) 0 second pause time

(b) 60 second pause time

Future Work

- •Determine optimal value for parameters to extensions (watchdog thresholds and Pathrater's in/decrement amounts).
- •Evaluate routing extensions using trusted node lists.
- •Replace watchdog with a reliable transport layer.
- •Test extensions using reliable data transfer (i.e., ftp transfer).
- •Test extensions for latency as opposed to throughput.

Conclusion

- Pathrater and Watchdog extend DST
 - To increase throughput by 17% and overhead from 9% to 17% with moderate mobility.
 - To increase throughput by 27% and overhead from 12% to 24% with extreme mobility.
- •Shows we can add routing nodes while minimizing misbehaving nodes' effect.

Questions?

