
CS 525M – Mobile and Ubiquitous 
Computing Seminar

A Network-Centric Approach to 
Embedded Software for Tiny Devices

Culler, Hill, Buonadonna, Szewczyk, Woo

Presented by Mike Scaviola



Introduction

• Traditional embedded systems engineered 
to a particular task
– Developed incrementally over 

generations
– Controller is just a command 

processing loop
– Sized and powered specially for the 

application
• Examples:  Disk drive controller, engine 

ignition controller



Introduction

• Sensors are a different kind of embedded 
device
– Distributed, dynamic, not designed to a 

specific control path
– Can communicate to coordinate at a 

higher level
• Multihop routing, location sensing

– Many different tasks sensors can perform
– Realtime action and long-scale 

processing



TinyOS

•They developed small RF wireless sensor devices 
and a tiny operating system

– 4MHz Atmel AVR 8535 microcontroller
– Single channel low-power radio
– 8KB program, .5KB SRAM

•TinyOS:  Simple, component-based 
– Framework for managing concurrency in a very 

limited environment (storage, energy)



TinyOS Concepts

• TinyOS consists of a scheduler and graph 
of components
– Each component has an interface and 

internal implementation
• Interface has synchronous commands

and asynchronous events
• Storage frames
• Concurrent tasks



Example application



Concurrency Model

• Events preempt tasks, tasks don’t preempt 
other tasks
– Tasks call commands 

• Commands can be accepted or 
refused (storage constraints, etc)

• Events triggered by hardware interrupts
• TinyOS is non-blocking

– Components are reentrant state 
machines, can resume operation after 
being interrupted.



Application-Level Communications

• Tiny Active Messages
– Active Message communication model, 

only smaller
• Event-driven, has lean communication 

stack
– 4 components to initiate AM:

• Specify data arguments
• Name handler
• Request Transmission
• Detect completion



Application-Level Communications

• Managing Packet Buffers
– Typically handled by an OS’s kernel
– 3 issues to address:

• Encapsulating data with 
header/trailer
– Holes

• Determining when buffer can be 
reused
– pWn3d!  (‘0wn3d’) by network

• Providing an input buffer before 
message has been inspected



Application-Level Communications

• Network discovery and ad hoc routing
– Uses the Active Messages
– Node periodically transmits ID and 

distance to its neighborhood
– Message handler checks if node is 

closest, records source, increments 
distance, retransmits message.

– Builds a breadth-first spanning tree 
rooted at the source (typically a gateway 
node)

– Packets get routed up the tree to parents 
(neighbors just discard the packet)



Lower-level Communication Challenges

• Crossing layers without buffering
– ‘Data pumps’
– Partition data into subunits, then operate 

on them at each level, unit-by-unit
– Components use the 

frame/command/event framework to 
make this a reentrant state machine



Lower-level Communication Challenges

• Listening at low power
– Too much energy spent listening for 

nothing
– Periodic and low-power listening!

• Create time periods when nodes 
cannot transmit.  Then nodes only 
need to listen part of the time

• Turn radio on for 30µs of every 300µs
• How to find out if a node is 

transmitting?
–Nodes send preamble of at least 

300µs
• Data length is 56,100µs, so 1% 

increase in xmit costs.



Lower-level Communication Challenges

• Physical layer interface
– Microcontroller is directly connected to 

the radio
• Realtime requirements – each bit 

handled by microcontroller!
– Uses a bit-level data pump
– Complex encoding done on each byte 

takes longer than the transmission time 
of a bit
• Need to encode next byte while 

transmitting current byte
– Reception is tricky.  18-bit sliding window



Lower-level Communication Challenges

• Media Access and Transmission Rate 
Control
– Radio doesn’t support anything
– Use CSMA scheme – only TX when idle

• Random backoff if channel busy
– Detection of a busy channel might mean 

that communication patterns of nodes 
are synchronized.  The TX failure can be 
used as feedback to shift sensor 
sampling phase and desynchronize.



Evaluation

•Tiny Active Message component is 322 bytes!
•10kbps raw bit rate (4b6 encoding)

– 833 bytes/sec throughput!
•Device-device RTT of 78ms



Conclusion

• Event-driven model interleaves processor 
between multiple data flows and stack 
layers

• Tasks provide logical concurrency within 
the stack

• The approach avoids complexities that the 
hardware could not otherwise handle 
(threading, multiple stacks, complex 
synchronization)

• Allows for high level applications on very 
limited hardware



Questions?

Who ‘0wnz’ the buffers?


