
CS 525M – Mobile and Ubiquitous
Computing Seminar

Mark Figura

About the article

“IrisNet: An Architecture for a Worldwide Sensor
Web”

Phillip Gibbons, Brad Karp
Intel Research Pittsburg

Yan Ke, Suman Nath, Srinivasan Seshan
Carnegie Mellon University

From IEEE Pervasive Computing, Oct-Dec. 2003

Introduction

• IrisNet = Internet-scale Resource-Intensive
Sensor NETwork services
– Doesn’t “IrisNet” sound cool?

• World-wide sensor web
– UI is like a database
– Users query the sensor-web for the

information they are looking for
• Parking spaces
• Coastal conditions

Introduction

• IrisNet will basically do everything
– Alerts – head to the bus stop; A tornado is

coming!
– How much time to wait for stamps at the post

office
– Where’s the nearest parking space?
– Lost and found – where’s my stuff?
– Watch-my-child-when-I’m-at-work
– Health alerts (watch out for the new flu)
– Homeland defense (watch out for those inbound

missiles)
– Many more!

How is this supposed to work?

• Each sensor will retain it’s own data until it is
necessary to transmit – keeps transmission down

• Ability to change sampling rates – don’t sample a
lot when nothing is happening

• One single interface for everything – one query tool
does parking spaces, coastal oil-spill monitoring,
watch-my-child, etc

• Data can be queried from anywhere
• Data integrity / privacy (usually an afterthought)
• Ability to deal with equipment failure
• Ease of writing ‘services’

Writing services

• “A tornado is coming!”
– Uses many different sensors

• “Is it a nice day today?”
– Uses many of the same sensors!

• A ‘naïve’ implementation would require
redundant sensors

• IrisNet allows the reuse of sensors
– Cheaper
– Easier for service authors
– Provides an interface to sensors that can

be queried from multiple services

Data -> services

• Services request processed data
– Instead of receiving video footage, ask

for a time-lapse picture
– Reduces transmission, power, time

• Data is updated often – traditional database
systems are less than optimal
– IrisNet can deal with this
– ‘Partition’ database across multiple

nodes
– Local data (barometric pressure in

Boston) is stored locally (in Boston)

IrisNet architecture

• Two types of nodes on IrisNet
– Sensing Agents (SAs)

• Sensors that implement the IrisNet
generic data acquisition interface

– Organizing Agents (OAs)
• Nodes that store a distributed

database of information collected from
one or many SAs

IrisNet architecture

(Note that multiple SAs and OAs can be run
on a single computer)

OA architecture

• Each service consists of a number of
dedicated OAs.

• Services can share SAs, but not OAs
• Use XML for the database

– XML provides good structure to the data
– Another buzzword for the paper

Distributing the database

• Database is partitioned with “a distributed
algorithm”

• Use structure of the database along with
DNS to locate each node
– city-Pittsburgh.state-PA.usRegion-NE

describes the city of Pittsburgh and can
also be registered as a DNS name

– The Pittsburgh OA’s IP address would be
bound to the DNS name

• What about name collisions?

Querying the database

• Distributed nature of the DB makes it
difficult to query
– Send request to the Lowest Common

Ancestor (LCA) (look up IP in DNS)
• LCA = the node that is closest to the

bottom of the tree, but can still access
all data from its children and/or itself

• (querying of siblings and parents are
not allowed)

Consistency

• Data in OAs might not be most current
• For example, an SA might monitor for

riptides by sending 10-minute time lapse
photos to an OA

• If one starts to develop right after a photo is
sent to an OA, there will be about 10
minutes of riptide before lifeguards are
notified

• Also, if there is only a small change, data
might not be transmitted to cut down on
transmissions = energy, time

SA architecture

• Senselet = program that filters data into a form
useful for an OA

• Protection from buggy or malicious senselets
– Each senselet runs as its own process

• Protected memory is great and all, but this is not any
protection from malicious senselets!

– Limit resource usage
• Doesn’t solve the problem either – they’re malicious

after all!

SA architecture

• Privacy
– Privacy filters remove identifying information
– ie. Put black boxes over faces and license plates

• Shared memory pools
– Senselets can work together
– ie. Many audio-based senselets might have to do a FFT

on the audio data. If one senselet does it, other senselets
can use it

Cool stuff - parking

• Tested on a mock-parking-lot with
Matchbox cars

• Allows queries that include constraints on
the parking space – handicapped, covered,
etc

• Uses Yahoo! Maps to get directions to the
parking spaces

Cool stuff - IrisLog

• PlanetLab allows monitoring of computer
usage through Ganglia

• IrisLog supports all Ganglia queries and
more

• Integrated into PlanetLab
• More efficient thanks to the “distributed

algorithm”

PlanetLab (AKA “US-
and-Eastern-Europe-
College-Lab”)

Cool stuff – Coastal imaging

• Time-lapse photos are useful for detecting
sandbars

10 minute time lapse photo
constructed from a video
camera near Oregon State
University

Paper’s conclusions

• In the past, sensor network research has
been on creating sensors

• This paper discusses a software
architecture for getting information from
these sensors once they’re deployed

• “While IrisNet represents an important first
step … [i]mportant policy, privacy, and
security concerns must be addressed
before rich sensors can exist pervasively at
a global scale.”

My conclusions

My conclusions

• This is not necessary yet?
– It will be a while before sensors are

ubiquitous
– Other new technologies will be invented

at that point
– Don’t hold back 2030(?) sensor

technology with 2003 software
paradigms

• That being said…
– It is important that these things are

thought about before sensors are
deployed!

My conclusions

• Most topics in the paper aren’t anything novel
– A description of the “distributed algorithm” for

partitioning databases might have been
interesting

– However, it’s pretty obvious that something like
a query-able distributed database will be
involved in a global sensor-web

• SA / OA – interesting extension of OOP to sensors
/ databases
– By the time we have sensors everywhere,

another programming paradigm might be more
popular / better?

• Paper authors just trying to get their names out
there?

My conclusions

• In summary…
– Of course it’s necessary to have a nice software

architecture to go along with the hardware
sensor deployment

– Right now, we don’t need this
• Parking space finder

– Neat tool, but it doesn’t need IrisNet
– Such varied tasks such as “inbound missiles!”

“find a parking space” and “watch my child”
would be awkward on a single interface.

– A fully-developed software architecture should
be developed before sensor deployment, but
not now

Questions?

