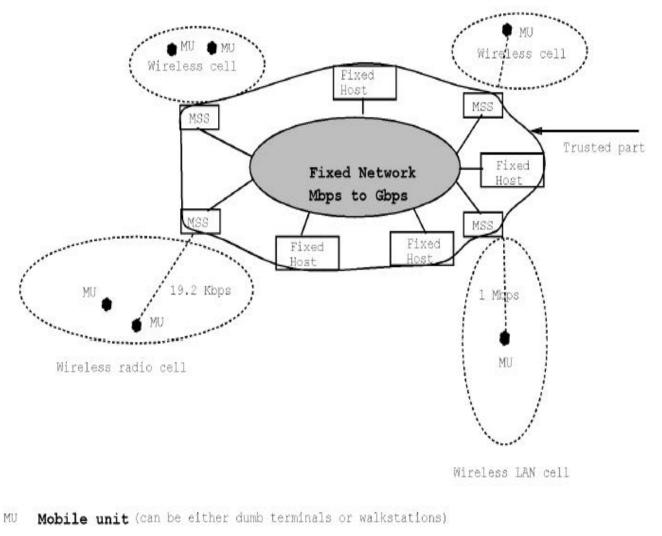
CS 525M – Mobile and Ubiquitous Computing Seminar

Damian Robo


Outline

- Introduction
- Data Dissemination
- Data Consistency
- Location Dependent Queries
- Interfaces
- Challenges
- Conclusions

Introduction

- Advances in wireless networking and powerful portable devices (laptops/palmtops/PDA-s etc.) have made mobile computing a reality, and in some cases a necessity.
- Mobile Computing has had and still has an impact on many areas of Computer Science such as networking, software developing, hardware, graphics etc.
- Here we will survey the impact Mobile Computing has on the area of Data Management.
- Wireless Networks, a breakthrough in technology, display some unique features not found in wired environments.

Introduction Cont'd

- $\tt MSS$ Mobile Support Station (has a wireless interface)
- Fixed Host (no wireless interface)

Features of a Wireless Distributed System

- Asymmetry in the Communications
 - Bandwidth in the downstream direction is much greater than the one in the upstream direction.
- Frequent Disconnections
 - Users often switch their devices on/off.
- Power limitations
 - Often devices are limited on the amount of energy they can use (batteries).
 - New solar powered devices are emerging (Casio, Fujitsu, Grundig Deutsche S.A.).
- Display/Screen Size
 - Small screens often display problems using graphics.
 - Samsung has presented a folding screen which solves some of the problems.

- Communication asymmetry and restrictions in power make the model of broadcasting data to the clients a nice solution.
- Data Dissemination
 - Delivery of data from a set of producers to a larger set of clients.
- In a Push based system the data is broadcasted/sent to clients without a request being done.
- Pros:
 - Servers avoid interruptions.
- Cons:
 - Relevance of broadcasted data.
 - Periodic or non-periodic?

Broadcast Disks

- Periodic Dissemination Architecture.
- Provide a multilevel mechanism that permits data items to be broadcast non-uniformly relative to importance.
- Mechanisms for managing the storage in the clients are devised to tailor caching and pre-fetching designed to perform efficiently.
- Memory hierarchy comes into play
 - Few items broadcasted more often on the top layer and more items broadcasted less often in the other layers.
- Clients do caching and pre-fetching to compensate for mismatches.
- Often servers do not "guess" right.

- There are options to combine push and pull systems using two channels (backchannel and frontchannel).
- A study has showed that pure pull or pure push systems are the best choice.
- IPP (Interleaved Push and Pull)
 - Clients use the backchannel to request items not appearing in the Broadcast channel.
 - Suffers from bottleneck issues found in Pull techniques.
 - Either adjust pull bandwidth at the expense of pull band.
 - Or apply a pull threshold.
 - Or cut off the least frequent broadcasted material.
- All the above techniques work on the expense of each other.

- Invalidation Reports
 - Server notifies clients about changes on the data being cached by them using a limited bandwidth channel.
- Several options exist to make these IR-s shorter.
 - Quasicopies.
 - Rate of cache purging.
 - Groups are introduced.
- AIDA (Adaptive Information Disposal Algorithm)
 - Flat organizations.
 - Rate monotonic organizations
 - Slotted rate monotonic organizations.

- IDA (Information Dispersal Algorithm)
- A file F is divided in n pieces
- Then there is a m<=n such that from these m pieces the whole file can be reconstructed.
- Directories group together data of interest for clients (requires less uptime)
- Indexing on air. Transmitting indexes along with data.
- Distributed Indexing Techniques (Best latency and tuning)
- Temporal and broadcast addresses

Data Consistency

- The limited bandwidth and frequent disconnections have a major impact on the consistency of data.
- One idea is to provide a view of the database that is consistent with the user's actions.
- Session guarantees are introduced:
 - Read your writes
 - Monotonic reads
 - Writes follow reads
 - Monotonic writes
- Implemented in the Bayou project

Data Consistency

- Escrow methods divide the total number of available instances among the number of sites in the system.
- Ease transactions when a client is on the move, help servers identify next set of transactions.
- Another technique is the split of large objects and assigning each part to different clients.
- Tentative transactions. While clients are offline transactions are applied on the cached data.

Data Consistency

- Isolation Only Transactions (IOT)
 - A transaction is executed on the mobile client.
 - It then enters a committed or pending state based on the connection with the server.
- Data Replication
 - Important since mobile clients are often not connected.
 - Can process files locally. Files are updateable.
 - Core copies. Several techniques exist to manipulate core copies.
 - Referees are responsible to track core update information.
 - Directories can be replicated in the same way.

Location Dependent Querying

- Clients in a mobile network change locations. Queries have to be answered in a way that is dependent on the current position of the client.
- Integration of GPS and IP enable the creation of location dependent services.
 - E.g. telling user if some information is available at that location.
- Advanced Traveler Information System (ATIS)
 - Provides trip information to travelers.

Location Dependent Querying

- Genesis is based upon ATIS in Minnesota.
- Contains data collector services from different departments, a database server and also data dissemination techniques for alerting users.
- Mobisaic is an extension of WWW to support mobile users.
 - Uses Dynamic URL-s, and active documents.
- Spreitzer and Themer proposed another architecture with User Agents and Location Query Service.

Location Dependent Query

- User Agents manage personal information
- Agents get information by infrared, GPS, sensors etc.
- Local Query Service is used to manage local-based services.

Interfaces

QBI Query by Icons

- Iconic visual image allowing users to make queries by using a pointing device.
- A semantic data model that captures most aspects of databases.
- Metaquery tools that help create queries during offline periods.
- All of the above are reflected in University of Berkeley InfoPad.
- Light Projection Keyboard PDA's are into play.

Interfaces

- Alonso and Mani present a pen based database access tool.
- Uses a cell phone to connect to databases by using schemas.
- In this case user can perform joins and other relational database tools using a pen.
- Often referred as the Universal Relation concept. It aids in automatic generation fo queries based on the attributes chosen by the user.

Challenges

- Prototyping
 - A full scale prototype that encompasses all of the above issues is still missing.
- Bandwidth Utilization
 - More work is needed to optimize tradeoffs between certain techniques.
- Transactional properties.
 - Not enough real cases are taken in consideration.
- Optimization of Location Based Query Processing.
 - A little has been done to enhance this.
- Data Visualization
 - Need more effective ways to use the scarce display space

Conclusions

- The nature of mobile computing itself presents a challenge in the area of database management, as well as in other areas.
- Need of
 - Better Protocols in data sharing.
 - Better Displays.
 - Clever Algorithms.
- More research is very likely to emerge in order to deal with the above issues.