CS 525M – Mobile and Ubiquitous Computing Seminar

Brian Demers Feb. 10, 2004

Overview: PowerScope Paper

- Background
 - Motivation behind the experiment
 - What is PowerScope?
- Experiment Details
- Results
- Conclusions
 - Theirs
 - Mine

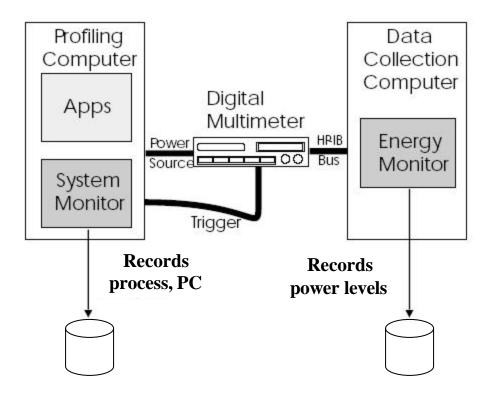
Background

Background

- Published in 1999 by Flinn and Satyanarayanan (Carnegie Mellon)
- Battery life is only expected to grow by 10-20% over the next decade
- Computing ability has been growing much faster than that
- Looking for ways to conserve power

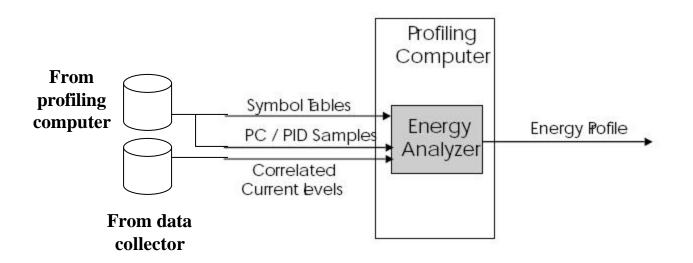
Background (cont.)

- Success of traditional profiling tools (ex. prof and gprof) with processor usage, memory usage
- How about a power profiling tool?


PowerScope

PowerScope

- Idea:
 - Sample power usage of a system at a very rapid rate
 - Multimeter/Data Recorder
 - Record executing process and program counter on profiling machine
 - Correlate data


PowerScope (cont.)

Stage 1: Data Collection & Synchronization

PowerScope (cont.)

- Stage 2: Post-Processing & Analysis
 - Correlating current levels to processes and functions

PowerScope (cont.)

• PowerScope sample output:

Energy usage by process

Durana	Elapsed	Total	Average
Process	Time (s)	Energy (J)	Power (W)
/usr/odyssey/bin/xanim	66.57	643.17	9.66
/usr/X11R6/bin/X	35.72	331.58	9.28
/netbsd (kernel)	50.89	328.71	6.46
Interrupts-WaveLAN	18.62	165.88	8.91
/usr/odyssey/bin/odyssey	12.19	123.40	10.12
Total	183.99	1592.75	8.66

Energy usage by function

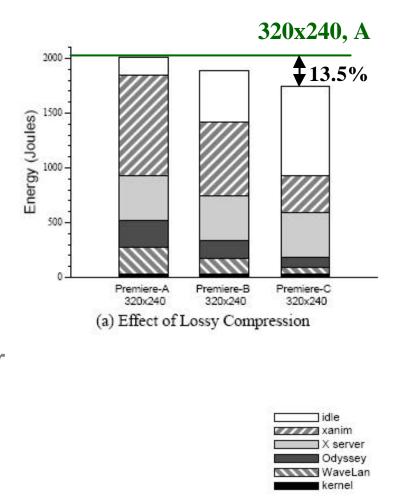
Energy Usage Detail for process	/usr/odyssey/bin/odyssey				
User-level procedures:					
	Elapsed	Total	Average		
Procedure	Time (s)	Energy (J)	Power (W)		
_Dispatcher	0.25	2.53	10.11		
IOMGR CheckDescriptors	0.17	1.74	10.23		
sftp DataArrived	0.16	1.68	10.48		
_rpc2_RecvPacket	0.16	1.67	10.41		
_ExaminePacket	0.16	1.66	10.35		

Experiment Details

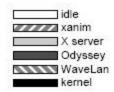
Experiment Details

- Problem to be solved: reducing power consumption of an application
 - Chose xanim, a freely-available video player
- Approach
 - Use Odyssey as a framework for resource management
 - Use PowerScope to show where energy is being used

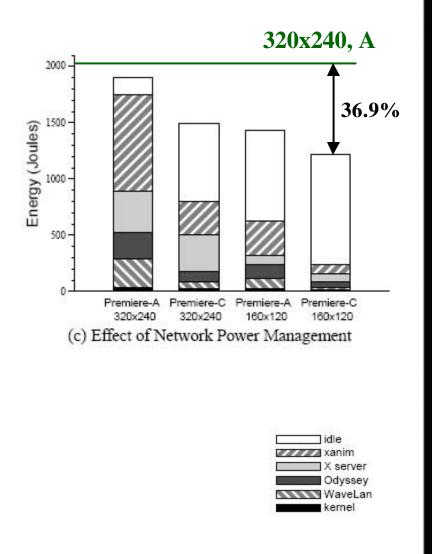
Experiment Details (cont.)

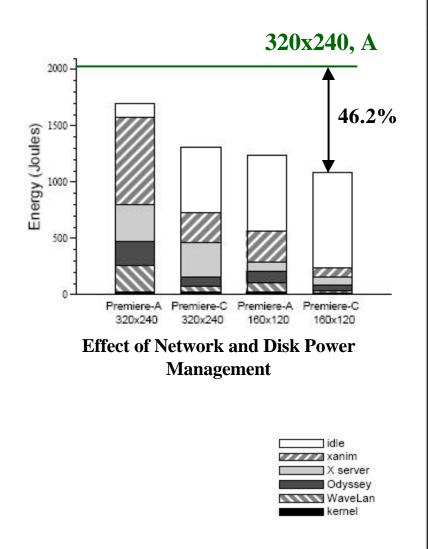

- Effects studied
 - Video compression levels (initial scope?)
 - Measured the effect of display size
 - Hardware-specific power management
 - Network hardware
 - Disk

Experiment Details (cont.)


- Hardware
 - Video server was 200 MHz Pentium Pro
 - Client was 75 MHz 486 running NetBSD
 - Client and Server connected via WaveLAN
 - Multimeter was HP 3548a digital multimeter
 - Also was a data collector (Win95 PC)
- Data Collection
 - Voltage was relatively constant
 - Sampled current usage every 1.6 ms. (approximate)
 - Used interrupts for synchronization

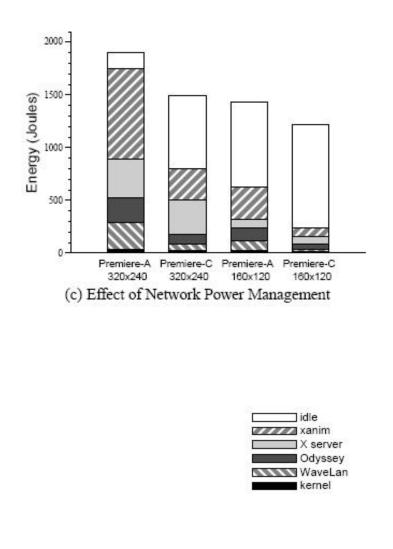
Results


- Video Compression
 - Three compression
 levels (A, B, and C)
 - Achieved 13.5%
 power reduction
 using highest
 compression
 - Reduced network
 traffic → lower power
 - X Server is unaffected


- Display Size
 - Achieved 20-25%
 energy reduction
 using display size
 - X Server had a large impact on energy use
- 320x240, A
 - Measured a baseline configuration

- Network Power
 Management
 - Modified WaveLAN driver to support a low-power standby mode
 - Modified Odyssey to put device into standby
 - Assumed video
 player is only app.
 using network

- Disk Power Management
 - Video frames are read from memory
 - Modified Odyssey to power down disk when video begins playing.
 - 46.2% energy reduction when using all optimizations


Conclusions

Conclusions

- From the authors:
 - Encouraged by initial results 46% energy reduction using PowerScope
- Future work
 - Experiments to "carefully calibrate the performance of" PowerScope
 - Enhancements to analyzer (post-processor)
 - Multiple application situations

Conclusions (cont.)

- Reading between the lines... How useful was PowerScope?
 - No function-level power measurements
 - Questionable
 process-level power
 measurements
 - Measurement
 resolution? (1.6 ms)

Conclusions

- Accomplishments
 - Measured system-level power usage
 - Were able to improve system-level power usage using system-level improvements (hardware, Odyssey)
 - Showed that attributing that power usage to processes and functions is hard/misleading

Questions/Comments?