CS 525M – Mobile and Ubiquitous Computing Seminar

Michael Theriault

Software Strategies for Portable Computer Energy Management

- Paper by Jacob R. Lorch and Alan J. Smith at the University of California
- In mobile computing, power consumption is an obvious concern
 - Battery life is not improving at the same rate as computational power.
- Computer hardware often has built in power saving features.
 - Must have software that takes advantage of the power saving modes available in hardware, and minimizes power use while making the experience as pleasant as possible for the user.
 - Three main strategy types for energy conservation:
 - Transition strategy
 - Load Change strategy
 - Adaptation strategy

Transition

- Transition strategy: The strategy used for when you switch to a low power mode.
- Need to balance performance and the needs of the rest of the system
 - Other components still use power when waiting for component to return to an "on" state
 - Don't want to harm the users perception of the performance.

Inactivity Threshold

- Assumes the longer the period on inactivity has been, the more likely that there will be a long period of inactivity following it.
- Uses this assumption to put the device in a low power mode.
 - Example: Screen savers

Load Balancing

- Load Balancing Strategy: Changing how a device operates so that it uses less power
 - Examples: Caching data from a hard drive so that the hard drive motor can be shut down more often
 - Another Example: Storing data locally so that wireless networking card can be used less often, broadcasting common data so that the portable device does not have to broadcast a request.

Adaptation Strategy

- Adaptation Strategy: Using software to allow novel, power saving use of components
 - Example: Using a broadcast disc so that a mobile device does not need to have it's own permanent storage.

Energy Considerations

- Need to balance the energy concerns of the entire system.
 - If other components must stay on longer to allow one component to be put in a low power state, it could cost more power
 - Different components take different amounts of power.
 - Can only save as much power as a component uses
 - Saving power with some components gives a greater gain than others.

Power Budget

Component	Нур. 386	Duo 230	Duo 270c	Duo 280c	Avg.
Processor	4%	17%	9%	25%	14%
Hard disk	12%	9%-	4%	8%	8%
Backlight	17%	25%	26%	25%	23%
Display	4%	4%	17%	10%	9%
Modem	n/a	1%	0%	5%	2%
FPU	1 %	n/a	3%	n/a	2%
Video	26%	8%	10%	6%	13%
Memory	3%	1%	1%	1%	2%
Other	33%	35%	28%	22%	30%
Total	6 W	15 W.	4 W	8 W	6 W

Table 2. For various portable computers, percentage of total power used by each component when power-saving techniques are used [4, 5].

Hard Drives

- Primary power saving mode is to stop the rotation of the hard disk platter
 - Best power saving with frequent stops
 - Problems:
 - Restarting the hard drive causes an annoying wait as the hard drive begins spinning again
 - Frequently stopping a hard drive increases the wear on the hard drive, causing the hard drive to last a much shorter time.

Hard Drive Power Consumption

		Road Warner 815 Mbyte Slimline	化物理学 化苯基苯基 经资金 医生物的复数形式	WD Portfolio
Capacity	1.35 Gbyte	815 Mbyte	1.35 Gbyte	1.0 Gbyte
Idle power	0.9 W	0.9 W	1.4 W	0.95 W
Standby power	0.23 W	0.5 W	0.35 W	0.20 W
Sleep power	0.025 W	0.15 W	0.15 W	0.095 W
Spin-up time	1 s	5 s	5 s	6 s
Spin-up energy	4,4 J	17.5 J	19.5 J	30 J

Table 3. Characteristics of various hard disks [12–15].

Hard Drive Power Saving Strategies

- Most common approach: Hard drive spins down after fixed inactivity period
 - Simple to implement
- Another strategy is to keep track of how effective various intervals have been.
 - Attempt to use intervals that have been successful before
- Strategy 3: Weight strategy to strategies that would be effective for recent data

– Assumes data use changes over time

More Hard Drive Strategies

- Another strategy: Use a random interval
 - Good worse case performance
 - Other algorithms can defeat it in the average case.
- Some attempts have been made to predict when hard drive accesses will be made.
 - In theory could result in performance improvement over using an inactivity interval.
 - None have been made to work well in a real life application as of this paper.

Alternatives to Hard Drives

- Flash memory can be used instead of a hard drive.
 - Positives:
 - Fast in retrieving data
 - Lower power usage
 - Downside:
 - More expensive than a hard drive
 - Writes take a longer amount of time.
 - Can only make a limited number of writes.

Wireless Networking as Hard Drive Alternative

- Can use Network as a Disk, broadcasting necessary data
 - Positives:
 - Low power usage
 - Requires less hardware for the mobile device
 - Negatives:
 - Much slower than a hard drive
 - Susceptible to network failures
 - Need to be in range of a central server.

Processor Power Savings

- Processor uses much less power if it gets turned off.
 - Modern operating systems have the ability to turn off the processor when all the processes are blocked.
 - Operating System can be tuned to prevent processes from busy waiting.

Regulate Processor Speed

- If it corresponds to being able to reduce core voltage, reducing processor clock speed can lead to power savings
 - Frequent changes in speed can cost more power than a higher overall clock rate.
 - Need to change gradually change speed.
 - React too slowly and the device can have trouble dealing with peak workloads
 - React too quickly and power savings are lost.

Networking Devices

• Can save power using Network devices in several ways.

- Can enter sleep mode to save power

- Can enable device to enter sleep mode more often by reducing network usage, such as compressing TCP packets
- Devices can be put into listen mode more often by having a central server broadcast frequently used data such as in broadcast discs.

More Networking Information

- Can reduce power by reducing broadcast power
 - Advantages
 - Uses less power
 - Improves the ability of other devices to broadcast
 - Disadvantages
 - Increases bit error rate
 - May require more error bits
 - -May require it to transmit more often

Strategies to Lower Broadcast Power

- Can communicate with other devices about the observed quality of service and level of interference
 - Use information to adjust broadcast power
- Device can also make adjustments based on its observed interference and adjust power accordingly
 - Can provide reasonable efficiency while simpler to implement.

Display Power Savings

- Display devices are among the most expensive devices power wise.
- Most common power saving strategy is to turn off the monitor.
 - Can not turn it off too quickly or it can be annoying to the user
- Other strategies include lowering the refresh rate, dimming the display, or switching to black and white

Overall Strategies

- Can also implement power savings system wide.
 - Advantages:
 - Simple to implement
 - More tolerable to the user
 - Disadvantages:
 - Save power less efficiently than component by component strategies.