
CS 525M – Mobile and Ubiquitous
Computing Seminar

Improving TCP Performance over 
Wireless Networks at the Link Layer

Christina Parsa & 
J.J. Garcia-Luna-Aceves

Josh Schullman



TULIP

• TCP interprets packet loss as congestion!
– Slow Start, Congestion Avoidance Visualization

• Transport Unaware Link Improvement 
Protocol
– Service Aware, not Protocol Aware
– Half-Duplex oriented
– Stateless!

• Decisions made on a per-destination basis

– Maintains local recovery of all lost packets
• Sliding window
• Lost packet retransmission handled by sender’s link

– Exploits TCP timeouts



Related Work

• Link-Layer
– AIRMAIL

• Sends entire window of data prior to ACK response
• Reduces ACK bandwidth consumption, power usage by 

mobile device
• Must wait for end of window transmission for error 

correction; may lead to TCP timeouts

• Split Connection
– Split Source/Base/Mobile Receiver

• Base station buffers, acknowledges packets to source not 
yet ACK’ed by receiver. Violates TCP!!!

• Proxy
– Proxy inserted between Sender/Receiver e.g., Snoop

• Packet Sniffer, retransmits packets when detecting duplicate 
ACKs.



Service Basics…

• Reliable Service
– RLP (reliable link-level packet)

• Guarantees in-order delivery w/out duplicates in a 
given timeout window

– TCP data ± TCP ACK (TACK)

• Unreliable Service
– ULP (unreliable link-level packet)
– TACK only

• Assumption: +1 TACKs in transit

– UDP packet
– Link-level ACK (LACK)



Basic TULIP Operation

• Packet interleaving requires transmission pacing 
per link, by maximum propagation delay (τ)

• At most, one packet in-transit at MAC layer
– TRANS: transmission started

• Send next packet after ∆t1 time
• ∆t1 = tPCK + 2τ + tACK + 2tTR + 2tc + tp

– WAIT: additional time to wait (∆t2)
• Allows self-regulation during bi-di transfer



Flow Control / Error Recovery

• Transmitter utilizes sliding window (size W)
• Sequence numbers assigned modulo 2W
• Sender/Receiver maintain buffer pools (W)
• UnACKed transmission buffer (sender)
• Retransmission list



Sender Algorithm



Receiver Algorithm



Sample Transmission

• Retransmission list
– R[sni, … , snn]
– R[sni*]

• Bit Vector
– Represents Negative 

ACKs
– CumACK N[0100…0]

• Sequence N+1
NACK’ed



MAC-level Acceleration
• Reduce transmission 

delays via cooperative 
TULIP/MAC interaction

• FAMA receives data 
packet, sends to TULIP

• TULIP notifies FAMA of 
packet payload
– If size == 0, send ACK
– Else if size <= 40, send packet + ACK
– Else, send RTS to request channel
– Why 40 bytes? Large enough to carry a TACK

• Eliminates assumption that all packets are +40 
bytes
– In doing so, reduces MAC-level overhead to acquire the 

channel



MAC-level Acceleration

• TRANS: acquired channel, data packet about to 
be transmitted

• WAIT: received RTS (sends source address, 
packet size to link-layer)



Implementation

• Implemented TULIP, 
Snoop in C++ Protocol 
Toolkit

• Simulation based on 
same source code as 
WING prototypes

• IEEE 802.11 physical 
layer emulation



Experiment 1: Throughput



Experiment 1: Goodput, Retransmissions



Experiment 1: RTT & Delay



Experiment 2: Throughput & Delay



Experiment 2: Delay



Experiment 3: Fading & Burst Losses



Experiment 3: Fading & Burst Losses



Conclusions

• TULIP successfully hides packet loss from 
TCP

• TULIP proves to be more successful at 
reducing timeouts due to varying BERs 
than Snoop

• Exploits normal link-MAC layer interaction
– Reduces bandwidth consumption, etc.

• Last but not least, STATELESS!!!
– Lends itself to be extremely scalable, since it is 

essentially TCP-version independent


