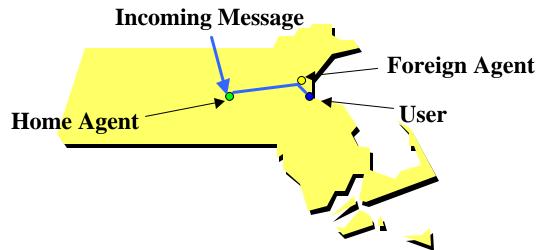
CS 525M – Mobile and Ubiquitous Computing Seminar

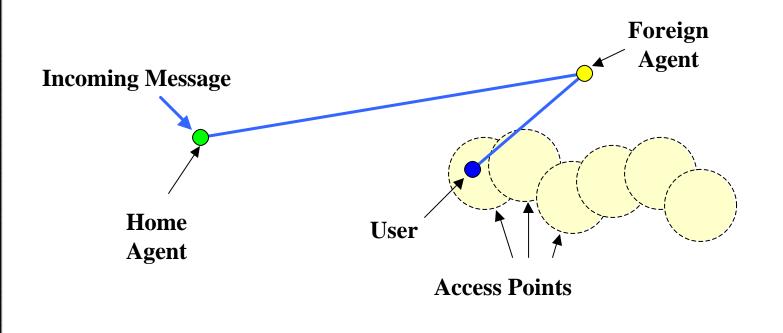
Brian Demers March 2, 2004


Overview: Micromobility Protocols

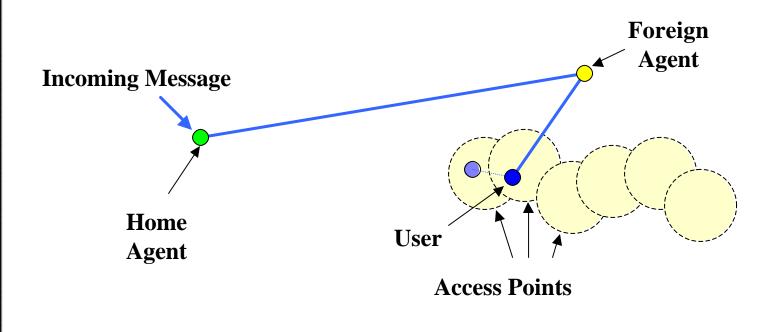
- "Comparison of IP Micromobility Protocols" (2002, Campbell et al.)
- Background
 What is micromobility?
- Paper
 - Paper goals
 - Protocols (CIP, Hawaii, HMIP)
 - Results
- Conclusions

Micromobility

Micromobility


Mobile IP

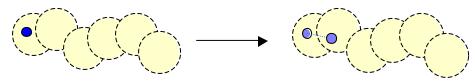
- Works fine when user is stationary
- What if user moves frequently?
 - Disrupts data stream, especially real-time data (ex: Voice over IP)


Micromobility (cont.)

- Micromobility protocols
 - Complement Mobile IP
 - Improved support for "local" handoffs

Micromobility (cont.)

- Micromobility protocols
 - Complement Mobile IP
 - Improved support for "local" handoffs


Paper Overview

Paper Overview

- Compare micromobility protocols
 - Cellular IP
 - Hawaii
 - Hierarchical Mobile IP (HMIP)
- Develop general protocol model
- Analyze design and performance tradeoffs
- Simulate protocol behavior
 Focus on handoff performance

Paper Overview (cont.)

- Protocol performance factors:
 - Layer of operation
 - Movement detection method
 - In band vs. out-of-band signaling
 - Location of routing information
 - Routing information update process
 - What happens during crossover?

Protocol Overview

	Cellular IP	Hawaii	Hierarchical Mobile IP
Layer	3, Network	3, Network	3.5, IP
	(IP)	(IP)	Tunnels

- Layer 3, Network/IP
 - Intermediate nodes are MAC/physical layer
 - All devices in micromobility network must be mobility-aware
- Layer 3.5, IP Tunnels
 - Intermediate nodes are IP nodes

Protocol Overview (cont.)

	Cellular IP	Hawaii	Hierarchical Mobile IP
Signaling	In-band (data packet)	Out-of-band (signaling message)	Out-of-band (signaling message)

- In-band
 - Use existing data packets to detect nodes, update routes
- Out-of-band
 - Use explicit signaling messages

Protocol Overview (cont.)

	Cellular IP	Hawaii	Hierarchical Mobile IP
Routing	Mobile-specific routing (reverse path routes)	IP routing w/mobile- specific (location) info	Hierarchical tunneling (GFA sets up tunnels)

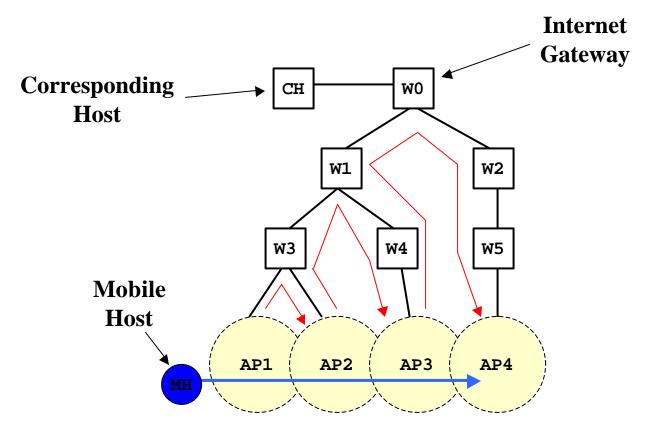
- Mobile-specific routing
 - Maintain information specific to mobile nodes/routes
 - Are aware that a routing protocol is in use
- Hierarchical Tunneling
 - Rely on tree-like hierarchy

Protocol Overview (cont.)

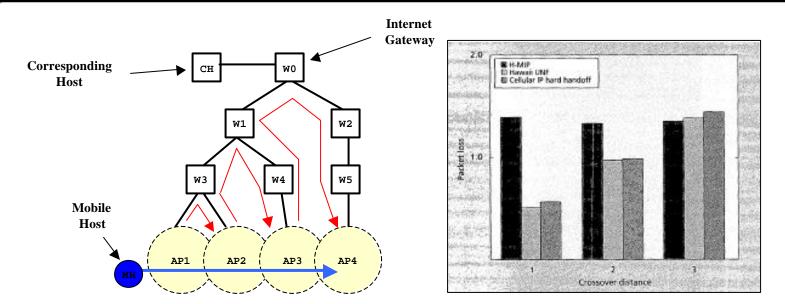
	Cellular IP	Hawaii	Hierarchical Mobile IP
Other Features	IP paging for idle hosts; hard & semi-soft handoffs	IP paging; 4 handoff types	Gateway FA

- IP Paging
 - Allows mobile nodes to enter power-saving mode
 - Provides way to rediscover nodes
- Handoff algorithms
 - Hard vs. soft (sudden vs. gradual)

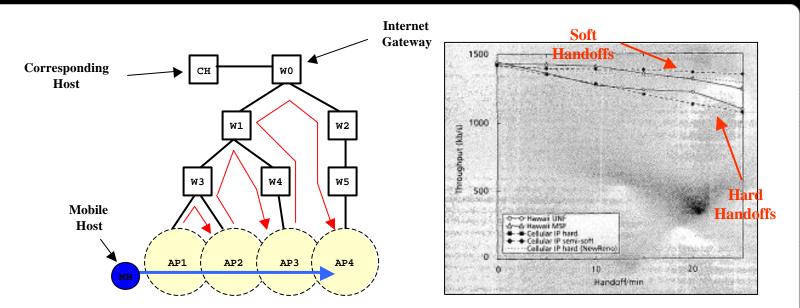
Protocol Summary


	Cellular IP	Hawaii	Hierarchical Mobile IP
Layer	3, Network (IP)	3, Network (IP)	3.5, IP Tunnels
Signaling	In-band (data packet)	Out-of-band (signaling message)	Out-of-band (signaling message)
Routing	Mobile-specific routing (reverse path routes)	IP routing w/mobile- specific (location) info	Hierarchical tunneling (GFA sets up tunnels)
Other Features	IP paging for idle hosts; hard & semi-soft handoffs	IP paging; 4 handoff types	Gateway FA

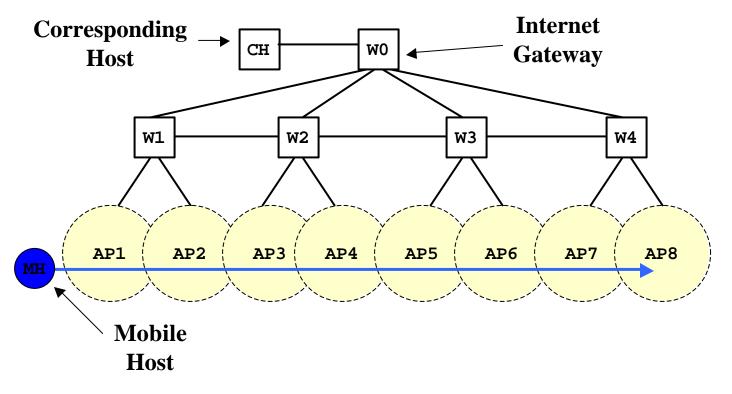
Simulation

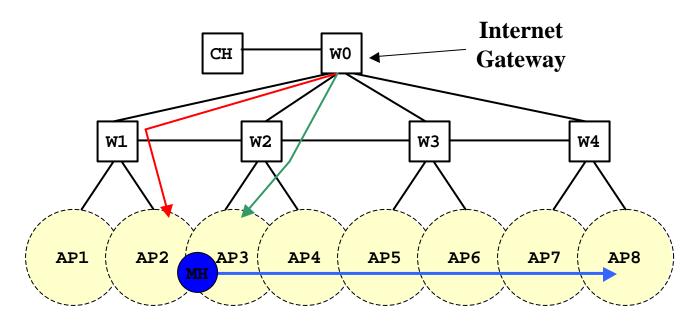

Simulation Goals

- Simulation of handoff scenarios
 Module for ns-2
- Evaluation criteria:
 - Packet loss/duplication
 - Routing updates
- Ways to improve handoff process


• Simulation scenario #1 (tree, hard handoffs):

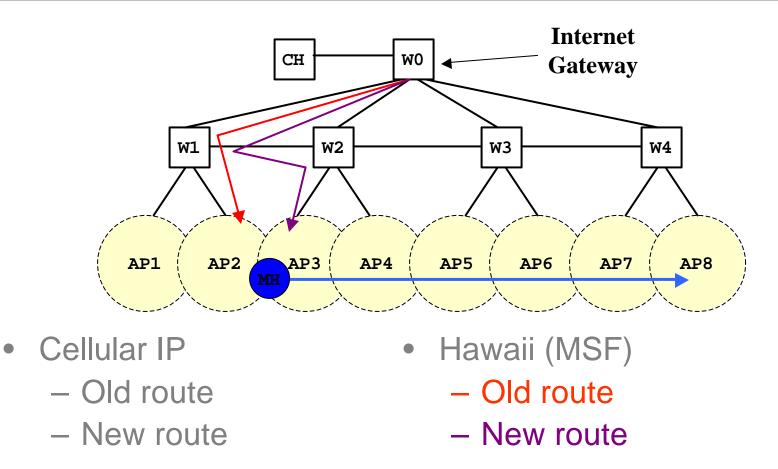
• Tests effect of crossover distance


- Measured packet loss during crossover
 - Cellular IP & Hawaii vary linearly with distance
 - Hierarchical Mobile IP is constant
 - HMIP: Routing decisions are made at Gateway FA (highest node)


- Measured throughput vs. handoff type
- Hard handoffs
 - Low signaling overhead, but tend to lose packets
 - Cellular IP hard handoff
 - Hawaii UNF

- Semi-soft handoffs
 - Prepare new access point before performing handoff
 - Cellular IP: bi-casting
 - Hawaii MSF: buffer & forward

• Simulation scenario #2 (connected tree):



• Tests protocol routing against non-tree topologies

- Cellular IP
 - Old route
 - New route

- Hawaii (MSF)
 Old route
 - New route

- Hawaii MSF forms non-optimal routes with non-tree topologies
- ...but it avoids congesting higher level nodes with routing information

Conclusions

Conclusions

- Developed a generic model for micromobility protocols
 - Viewed Cellular IP, Hawaii, and HMIP as instances of this model
- Developed extensions for ns-2 allowing simulation of these three protocols
- Found that location of crossover node is most important performance consideration

Conclusions

- I would add...
 - Provided insight about the handoff problem
 - Identified a potential routing issue with Hawaii (MSF handoff scheme)
 - Laid groundwork for future work relating to security and other practical issues with these protocols
 - Could extend this work to ad-hoc networks (?)

Questions/Comments?