CS 525M – Mobile and Ubiquitous Computing Seminar

Characterizing User Behavior and Network Performance in a Public Wireless LAN

Balachandran, Voelker, Bahl, Rangan

Presented by Mike Scaviola

Lamp Time Expired

Outline

- Introduction
- Network Environment and Data Collection
- Analysis of Results
 - User Behavior
 - Network Performance
- Conclusion

Introduction

- Analysis of user behavior and network performance in a public-area wireless network
 - Captured data from a 3-day ACM conference at UC San Diego, 2001
- 2 phases
 - Monitored SNMP data from 4 APs
 - Packet headers of all wireless traffic

Goals

- Gain knowledge of wireless user behavior, wireless network performance. Identify wireless workload characteristics.
- Characterize user behavior for use with analytic and simulation studies
- Better understanding of wireless network deployment issues

Network Environment

•802.11b network in conference auditorium. 110x60x27 ft
•4 ORiNOCO AP-1000 wireless access points in ceiling.
•195 users (40% of attendees).
•Wireless cards from 8 different vendors

Trace Collection

- SNMP data from each AP for 52 hours
 - Wrote *snmputil* to walk the MIB tree every minute. Post-processed with perl scripts.
- *Tcpdump* trace of packet headers from cisco 2924 switch.

- Analyzed using CoralReef software

User Behavior

•Number of associated users climbs to a peak when conferences are in session, falls sharply during breaks.

User Behavior

- User arrivals
 - Steady increase as sessions start, decrease as sessions conclude.
 - Correlations in time and space
- Modeled as a Markov-Modulated Poisson Process (MMPP)
 - Two states: ON, OFF
 - ON Random arrivals at constant rate
 - OFF No arrivals into the system
 - Mean inter-arrival time is 38 seconds
 - Mean OFF state duration: 6 minutes

Session Duration

•90% of sessions last less than one hour. 10% are between one and 3 hours.

•Fits the General Pareto Distribution with shape parameter .78 and scale parameter 30.76 . (Coefficient of determination is 0.9)

Long sessions are mainly idle

Session Duration

Implications

- Short session times means DHCP servers can have shorter lease times.
- A good way to deal with limited IP addresses by recycling them quickly.

User Data Rates

•Data rates are relatively low and correlate with session times.

- •Bandwidth range from 15kbps to 590kbps
- •3 intervals of bandwidth distribution
 - Light: Lower 25th percentile
 - Medium: 25th to 90th percentile
 - Heavy: top 10%
- •Long sessions have a low average data rate
 - All sessions longer than 40 minutes are light

Session Type	Mean data rate (Kbps)	Peak Data Rate (Kbps)	
Light	below 15	below 60	
Medium	15-80	60-175	
Heavy	above 80	above 175	

Application Popularity

•TCP is 91% of traffic, by byte count. (76% of all flows)

- •HTTP is 46% of total bytes
- •SSH: 18%

User Mobility

•Users were mobile a the beginning and end of conference sessions.

- •80% of users seen at more than one AP
- 16% stationary
 - Majority of stationary users had longer sessions

User Behavior Summary

- Users evenly distributed across APs
 Arrivals correlated in time and space
- Most sessions are short. 60% < 10 minutes
 Longer sessions are typically idle
- Sessions are either light, medium, or heavy and range from 15-590kbps
- HTTP and SSH total 64% of bytes and 58% of flows.
- Users are mobile when expected.

Network Performance

- Load peaks from 11am-12:30 and drops during lunch.
 - Peak throughput of 3.2mbps
- Uneven load distribution across APs
 - 37% difference between NE and SW
 - Due to application workload of users
- Load is sensitive to individual bandwidth requirements, not number of users
- Peak load does not occur when number of users is at maximum.

Channel Characteristics

Packet error rate obtained from SNMP

- •Error rates are bursty, and correlate to a large number of handoffs
- •Error greater than normally used in simulations
 - Difference due to measurement at packet-level rather than bit-level

•Number of link-level retransmissions does not match number of errors because MAC beacons are not retransmitted.

Statistic	% Packets in Error					
	NE	NW	SE	SW	Overall	
Mean	2.81	2.81	2.83	2.75	2.41	
Median	2.16	1.99	2.13	2.18	2.15	
90 th %ile	5.32	6.07	5.33	5.59	4.01	

Summary of Performance

- "Not surprisingly", load correlates with conference schedule
- Bandwidth is determined by individual behavior
- Network is overprovisioned with 4 APs for 195 users.
- Wireless channel characteristics are similar for all APs, more time-dependent than location-dependent.

Conclusions

- Most sessions are relatively short
- DHCP can be configured with short lease times
- Few APs are needed for a large number of users
- Study is characterized by concentrated space and scheduled use and would share characteristics with classrooms, airports, etc.

