Ghosts in the Machine: Interfaces for Better Power Management

Talk by Emmanuel Agu

CS Dept. WPI

Introduction

- Power management currently done per I/O device
- Applications do not consider current power state of devices
- Result:
 - Simple, modular implementation
 - System-wide power usage may not be optimal
 - Performance, energy may be sacrificed
- Careful power management needed

Worcester Polytechnic Institute

Tradeoff between energy and performance

• Good performance

•Currently,..**Inherent tradeoff** exists between performance and energy conservation

WPI

3

Current Device power management

• Problem:

Device-centric strategies do not consider the operating environment contexts, such as

- Base power of mobile computer
- Activity of other devices
- Application intent
- Our Approach:

Provide an infrastructure to expose additional information about operating environment to both applications and devices

Goals and contribution

- Goals:
 - Improve both performance and energy
 - Enable cross-device optimization
 - Allow end users to specify their relative priorities for performance and energy conservation
- Contributions: Simple interfaces to expose additional contexts
 - Power manager for querying device state
 - Self-tuning power management (STPM) modules for disk, n/w
 - Ghost hints for cross-device power management

Review: Power Management

- Network Device: 802.11b wireless
 - CAM Continuously Active Mode
 - PSM Power Saving Mode
 - + power usage reduced by 70 to 80%
 - delay proportional to polling period (100 ms)
- Disk Device: IBM/Hitachi microdrive
 - Active
 - Low Power Idle / Standby
 - + power usage reduced by 55% / 90%
 - transition time of 300ms / 800ms

6

Impact of power management

- Assumption: Local data fetch less costly
- Local access may be more expensive for small files
- Break-even point dependent on device state
- Simple adaptation through cache hierarchy

7

Limitation of adaptation

Example: Browser fetching many small images

- For single image fetching from network is correct
- For many images fetching from disk is correct
 - Amortized transition cost over many reads
- Problem: Reactive adaptive caching does not help
 Disk continues to be in standby state
- Solution: Apps disclose "accesses that might have been"
 - Authors used ghost hints to implement this

8

Power manager

- Central repository that maintains information about:
 - State of the device
 - Performance characteristics of I/O devices
 - Energy characteristics of I/O devices
- Power manager interface
 - 3 calls for devices: register, deregister, notify
 - 5 calls for applications 4 to query device state and characteristics, 1 for registering callbacks

10

Self-tuning power management

• STPM modules consider:

- Application access patterns
- Base power of mobile computer
- Energy and performance characteristics of the device
- Relative priority of performance and energy conservation

- STPM modules decide:
 - Time to transition to high power state
 - Time to transition to low power state

Worcester Polytechnic Institute

11

Disk power management with STPM

Transition to power saving mode employs

- Break-even heuristic
 - Disk is likely to remain idle if it has been idle for a period
 - Incorporate the STPM principles

Transition to active mode employs both

- Reactive strategy
 - Transition on a request
- Proactive strategy
 - Use ghost hints to transition even with no device access

Evaluation

Goals:

- Effect of cache manager's adaptive, cross-device strategy
- Influence of global knob
- Benefits of ghost hints

Client: iPAQ handheld with Cisco 350 wireless card and IBM/Hitachi microdrive

Test applications:

- Email-sync recorded e-mail activity
- Dillo web browser with Berkeley web traces

13

Effectiveness of energy-aware caching

- Equal priority for performance and energy
- Average response time is reduced by 27% to 42%
- Total energy usage is reduced by 5% to 9%

14

- STPM modules base their decision solely on device accesses
- No change for knob value less than 95

WPI

15

- Email: Substantial benefit when performance is high priority
- Web: Less likely to see run of accesses clustered together

Worcester Polytechnic Institute

16

Importance of ghost hints

Web with full cache

Ghost hints show a positive effect on the system

Ghost hints yield substantial benefit for some workloads, and do no harm in the situations where they seem 17 ineffective

References

MobiSys '04 talk by Manish Anand

