
Pond: the OceanStore
Prototype

Presented By: Paul Timmins

Sean Rhea, Patrick Eaton, Dennis Geels,
Hakim Weatherspoon, Ben Zhao, and John Kubiatowicz

2nd USENIX Conference on File and Storage Technologies
2003

Worcester Polytechnic Institute

2

Objectives

• Universally available/accessible storage
– Access is independent of user’s location
– Share data among hosts “globally” on the Internet

• High Durability
– Protect against data loss
– Resilient to node and network failures

• Consistent
– And, with easily understandable and usable consistency

mechanisms
• Integrity

– What is read is what was written
• Privacy

– Prevent others from reading your data
• Scalable

– “Internet-scale”

Worcester Polytechnic Institute

3

Assumptions

• Infrastructure (hosts and network) is
untrusted
– Except in aggregate (large % of

infrastructure)
– Thus, requiring security and integrity

• Infrastructure is constantly changing
– Requiring adaptability and redundancy
– But, without management overhead

(self-managing)

Worcester Polytechnic Institute

4

OceanStore System Layout

Worcester Polytechnic Institute

5

Storage Organization

• Everything is identified by a GUID (globally unique
identifier)

• Data objects (typically a file) are the unit of storage
– Versioned
– Latest version is identified by an Active GUID: hash of owner’s

public key + app specified name
– Each version is identified by a Version GUID: hash of contents

of a version
• Objects are divided into blocks

– Blocks are identified by a Block GUID, constructed through a
hash on the block content.

– Divided into immutable blocks
– Blocks are immutable
– Pond uses 8KB blocks

Worcester Polytechnic Institute

6

Data Object Structure

Worcester Polytechnic Institute

7

Why Hashes for Identifiers?

• Cryptographically secure hashes have a number of useful
properties:
– Provides statistically insignificant likelihood of collision

• To have a 50% chance of collision, you need to store about 2^(n/2)
objects

• Pond uses 512 and 1024 bit hashes
– Reversing hash (learning something about what was stored) is

difficult/impossible
– When used over content, provides integrity, as data can be

verified
• However, a number of concerns:

– Undetectable (or at least difficult to detect) collisions
– Hash Function Obsolescence

Ref: Henson. “An Analysis of Compare-By-Hash”. 9th HotOS,
2003.

Worcester Polytechnic Institute

8

Consistency

• Changes are atomic updates
– Adds blocks, identified by Block GUIDs
– Then adds new version (Version GUID)
– Then, updates Active GUID to latest Version GUID

• Primary replica governs updates to GUID, to minimize
number of hosts involved in updates
– Alternative would be to require all hosts to participate, which

is inherently unstable
• Gray et al, “The Dangerous of Replication and a Solution”, SigMod

1996
• Small set of hosts serve as the primary replica

– Using a Byzantine-fault-tolerant protocol to agree on updates
• Nodes sign messages using private-keys (between rings) or

symmetric-key (node to node in inner-ring)
– Requires agreement of ~2/3 of servers to make a decision, and

is infeasible for large number of servers
– Chosen by a “responsible party” that chooses stable nodes

Worcester Polytechnic Institute

9

Tapestry

• Decentralized object location and routing
system

• Routes messages based on a GUID
• Hosts and resources named by GUIDs
• Hosts join tapestry by providing a GUID

for itself, then publish the GUIDs of
resources

• Hosts can also unpublish or leave tapestry

Worcester Polytechnic Institute

10

Erasure Codes

• To protect data, replication is needed…
– But, resilience against a single failure requires 2x storage (2

copies), resilience against 2 failures requires 3 copies, etc.
• Erasure Codes divide data in m identical fragments, which

are then encoded into n fragments (n>m).
– Erasure codes allow the reconstruction of original object from

any m fragments
– n/m is the storage cost
– For example:

• N=2, m=1, storage cost=2x (mirroring)
• N=5, m=4, storage cost=1.25x (RAID5)
• N=32, m=16, storage cost=2x (used in Pond prototype)

– Uses Cauchy Reed-Solomon coding: oversampling of a
polynomial created from the data

– Cool huh?

Worcester Polytechnic Institute

11

Erasure Codes (2)

• Used in Pond:
– First, update the primary replica with

new blocks
– Erasure code the new blocks
– Distribute the erase-coded blocks
– To reconstruct a block, a host uses

tapestry to get fragments (identified by
BGUID and fragment number)

Worcester Polytechnic Institute

12

Block Caching

• Nodes cache blocks, to avoid
reconstructing from fragments:
– Nodes request whole block from

tapestry
– If not available, then fragments (and

caches the block)

• LRU cache maintenance

Worcester Polytechnic Institute

13

Update Path

Worcester Polytechnic Institute

14

Pond Architecture

Worcester Polytechnic Institute

15

Overhead

• 8kb blocks used
– Meaning, some waste from small blocks

• Metadata:
– so a 32/8 policy requires 4.8 times

storage, not 4 times

Worcester Polytechnic Institute

16

Latency Tests

Wide
Area

Local
Area

Worcester Polytechnic Institute

17

Latency Breakdown

Worcester Polytechnic Institute

18

Andrew Benchmark

• Native NFS performance compared
to NFS over Pond, with AGUID as
NFS file handle

Worcester Polytechnic Institute

19

Results: Andrew Benchmark

Phase Linux Pond-512 Pond-1024
I 0.9 2.8 6.6

II 9.4 16.8 40.4
III 8.3 1.8 1.9
IV 6.9 1.5 1.5
V 21.5 32.0 70.0

Total 47.0 54.9 120.3

• 4.6x than NFS in read-intensive phases
• 7.3x slower in write-intensive phases

Worcester Polytechnic Institute

20

Throughput vs Update Size

Worcester Polytechnic Institute

21

Summary of Perf

• Throughput limited by wide area
bandwidth

• Latency to read objects depends on
latency to retrieve enough fragments

• Erasure coding is expensive

Worcester Polytechnic Institute

22

Comments

• Segmentation of the network where
no group of inner tier servers can
reach 2/3’s majority

• Varying network quality/performance
between nodes

• Byte shifting (since fixed length
blocks)

• Offline/disconnected operation

Worcester Polytechnic Institute

23

Conclusions

• Providing ubiquitous access to
information requires addressing:
– Unreliable systems
– Consistency
– Integrity
– Privacy

• Pond achieves this through:
– Tapestry: An overlay network that manages

resources, a subset of servers managing
updates, cryptographically secure hashes for
identifiers

• Many optimizations exist.

Questions?

Worcester Polytechnic Institute

25

Ref

• Some material from:
http://oceanstore.cs.berkeley.edu/pu
blications/talks/tahoe-2003-
01/geels.ppt

