PowerScope

Talk by Emmanuel Agu

Adapted from talk by Brian Demers

CS Dept. WPI

Overview: PowerScope Paper

Background

- Motivation behind the experiment

- What is PowerScope?
- Experiment Details
- Results
- Conclusions
 - Theirs
 - Mine

WPI

Laptop Improvement

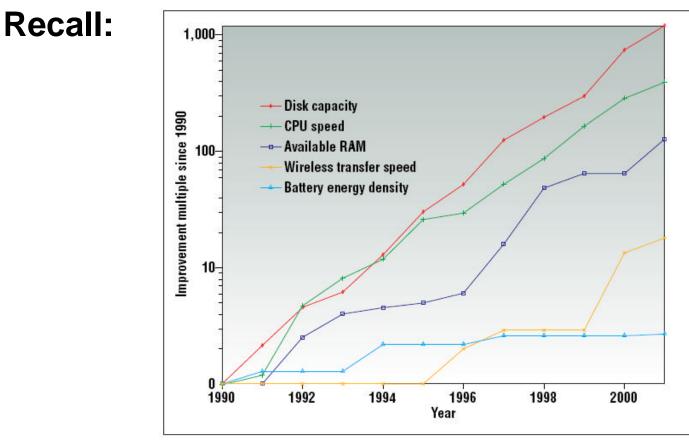


Figure 1. Improvements in laptop technology from 1990-2001.

3

Background

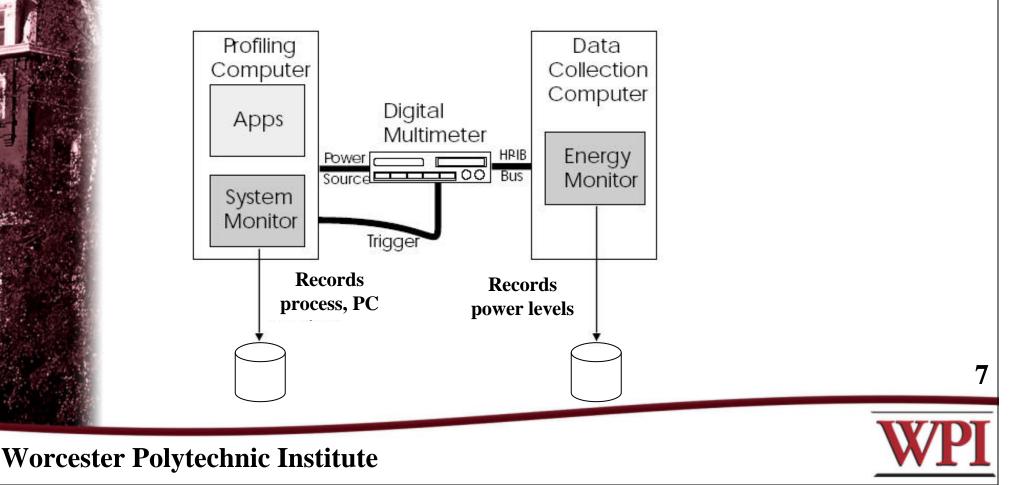
- Published in 1999 by Flinn and Satyanarayanan (Carnegie Mellon)
- Battery life is only expected to grow by 10-20% over the next decade
- Computing ability has been growing much faster than that
- Looking for ways to conserve power

Background (cont.)

- Success of traditional profiling tools (ex. prof and gprof) with processor usage, memory usage
- How about a power profiling tool?

PowerScope

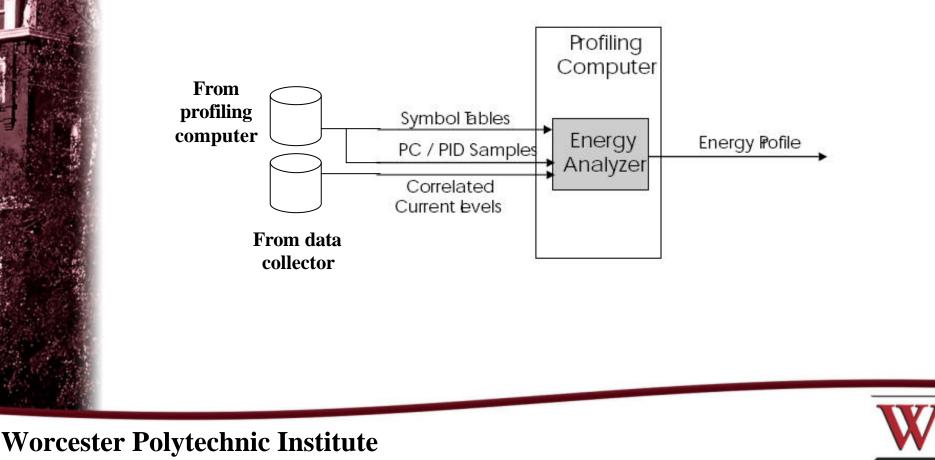
• Idea:


- Sample power usage of a system at a very rapid rate
 - Multimeter/Data Recorder
- Record executing process and program counter on profiling machine
- Correlate data

WPI

6

PowerScope (cont.)


Stage 1: Data Collection & Synchronization

PowerScope (cont.)

• Stage 2: Post-Processing & Analysis

Correlating current levels to processes and functions

8

PowerScope (cont.)

• PowerScope sample output:

	Elapsed	Total	Average
Process	Time (s)	Energy (J)	Power (W)
/usr/odyssey/bin/xanim	66.57	643.17	9.66
/usr/X11R6/bin/X	35.72	331.58	9.28
/netbsd (kernel)	50.89	328.71	6.46
Interrupts-WaveLAN	18.62	165.88	8.91
/usr/odyssey/bin/odyssey	12.19	123.40	10.12
Total	183.99	1592.75	8.66

Energy Usage Detail for process	/bin/odyssey		
User-level procedures:			
D	Elapsed	Total	Average
Procedure	Time (s)	Energy (J)	Power (W)
Dispatcher	0.25	2.53	10.11
IOMGR_CheckDescriptors	0.17	1.74	10.23
_sftp_DataArrived	0.16	1.68	10.48
_rpc2_RecvPacket	0.16	1.67	10.41
ExaminePacket	0.16	1.66	10.35

Worcester Polytechnic Institute

9

Experiment Details

- Problem to be solved: reducing power consumption of an application
 - Chose xanim, a freely-available video player
- Approach
 - Use Odyssey as a framework for resource management
 - Use PowerScope to show where energy is being used

10

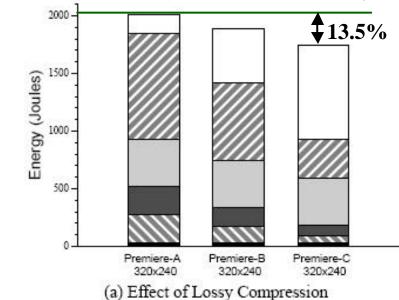
Experiment Details (cont.)

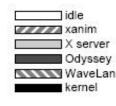
- Effects studied
 - Video compression levels (initial scope?)
 - Measured the effect of display size
 - Hardware-specific power management
 - Network hardware
 - Disk

11

Experiment Details (cont.)

Hardware

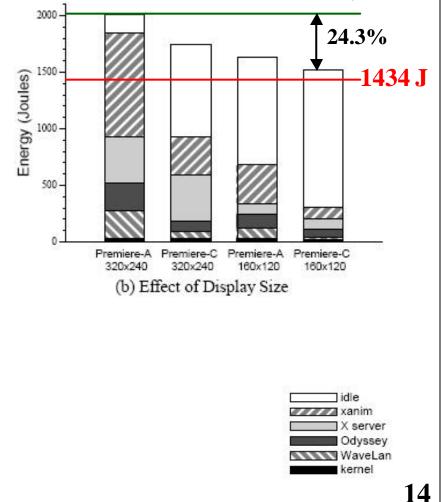

- Video server was 200 MHz Pentium Pro
- Client was 75 MHz 486 running NetBSD
- Client and Server connected via WaveLAN
- Multimeter was HP 3548a digital multimeter
 - Also was a data collector (Win95 PC)
- Data Collection
 - Voltage was relatively constant
 - Sampled current usage every 1.6 ms. (approximate)
 - Used interrupts for synchronization


12

Results

320x240, A

- Video Compression
 - Three compression
 levels (A, B, and C)
 - Achieved 13.5% power reduction using highest compression
 - − Reduced network traffic
 → lower power
 - X Server is unaffected

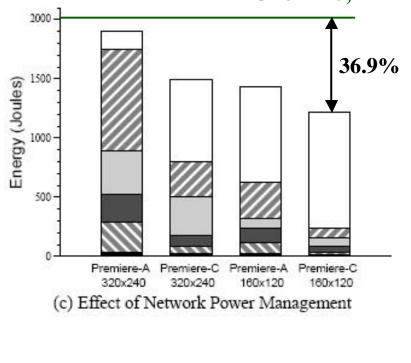


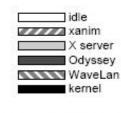
13

Results (cont.)

320x240, A

- Display Size
 - Achieved 20-25% energy reduction using display size
 - X Server had a large impact on energy use
 - Measured a baseline configuration

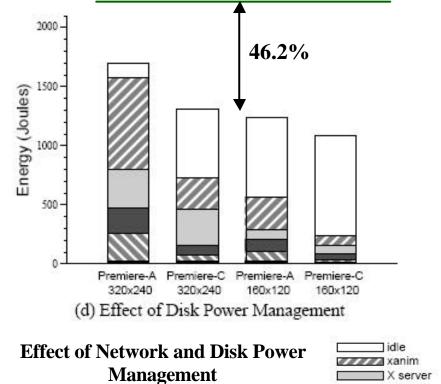




Results (cont.)

320x240, A

- Network Power Management
 - Modified WaveLAN driver to support a lowpower standby mode
 - Modified Odyssey to put device into standby
 - Assumed video player is only app. using network


15

Results (cont.)

320x240, A

Disk Power Management

- Video frames are read from memory
- Modified Odyssey to power down disk when video begins playing.
- 46.2% energy reduction when using all optimizations

16

Odyssey

Conclusions

- From the authors:
 - Encouraged by initial results 46% energy reduction using PowerScope
- Future work
 - Experiments to "carefully calibrate the performance of" PowerScope
 - Enhancements to analyzer (post-processor)
 - Multiple application situations

17

Conclusions

Accomplishments

- Measured system-level power usage
- Were able to improve system-level power usage using system-level improvements (hardware, Odyssey)
- Showed that attributing that power usage to processes and functions is hard/misleading

18