

Week 4 – Wireless Networking, measurement and Internet Connectivity

Su, Scott, Hui, et al. – Haggle: Seamless Networking for Mobile Applications

Adam Goldstein abg@wpi.edu CS 525w – Mobile Computing (02/15/2011)

Haggle: The idea

- Separate application logic from transport bindings
 - i.e. applications can focus on their task;
 someone else will make sure the data gets in an out successfully.
- Authors provide a proof of concept for web browsing and e-mail.

Haggle: The idea

- Haggle uses late binding
 - Don't worry about network connectivity etc.
 until actually trying to transmit data
- Applications can communicate
 - Share data and metadata
- Manage local and shared resources
 - Options/preferences for all sources can be managed on any device

Author Examples

- Send an e-mail to person next to you
 - Ideally use Bluetooth or 802.11.
 - In practice, phone->e-mail server, recipient's e-mail server->phone. Slow!
- Reading news while on public trans
 - Internet connection dies, goodbye news.
 - Ideally, we can borrow the same news stories from browsers all around us.

Our Examples

- A few additional ideas:
 - Shared GPS information
 - Haggle chains. Devices like repeaters.

- What else could be made possible?
- Concerns?

Haggle: How it works

- Just-in-time binding
 - Provide alternate routes for data when usual channels are slow or unavailable
- Persistent data/metadata
 - Stored as key/value pairs, united in direct relationships, ownership & dependency
- Centralized resource management
 - Device preferences define behavior

Connectivity Interfaces

- Must support many networking technologies
 - Differ by range, latency, bandwidth, cost, availability, power, etc.
- Connectivity A schedulable resource
 - Even two of the same kind of connection are considered separate resources
- Haggle currently focuses on 802.11

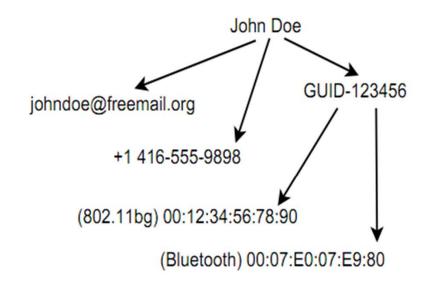
Protocols and Forwarding

- Different protocols, different needs
 - HTTP -> web server & request objects
 - P2P -> direct in and out from a peer
- Once connection is made, forwarding
 - Haggle can maintain multiple connections and can forward to all
 - Choices are made by running many algorithms in sync

Forwarding algorithms

- Epidemic Spread to all like a virus
- MANET [Minimum Exposed Path to the Attack] in Mobile Adhoc Network.
 Can be based on:
 - Geography
 - Distance-vectors
 - Mobility-based
 - Store and forward

Naming for Forwarding Algorithms


Message

DO-Type	Data
Content-Type	message/rfc822
From	Bob
То	Alice
Subject	Check this photo out!
Body	[text]

Attachment

DO-Type	Data
Content-Type	image/jpeg
Keywords	Sunset, London
Creation time	05/06/06 2015 GMT
Data	[binary]

(a) Message and Attachment

(b) Name Graph

Fig. 2: Example Data and Name Object Graphs

Data Management

Data Objects

- Haggle data is structured & searchable
 - Information is findable and searchable for Haggle and its client applications
 - Think: Google Desktop
- Data objects are type/value pairs
 - Usually strings, binary also works
 - Metadata is usable, encouraged, but not mandatory

Data Management

Relationships

- Data is connected
- Can represent prerequisites
 - Photo album links to its pictures
 - E-mail links to its attachments
 - Webpage links to
- Can represent ownership
 - Browser owns cached items
 - Mail client owns stored e-mail

Scheduling and Managing

Data Objects

- Resource manager schedules tasks
 - Operations are asynchronous or immediate
- Priority can vary over time as interfaces because more and less costly
- Tasks can ask for extensions
- The shared data management is utilized with just-in-time binding to make these scheduling decisions.

Haggle: Existing Applications

- Consists of two elements:
 - SMTP/POP proxy for e-mail clients
 - SMTP/POP protocols for e-mail servers
- Haggle acts as an intelligent mailbox
 - If connected to the internet, send away
 - If not, client sends through proxy, Haggle uses available network interface to find easiest path out the door.

Haggle: Existing Applications

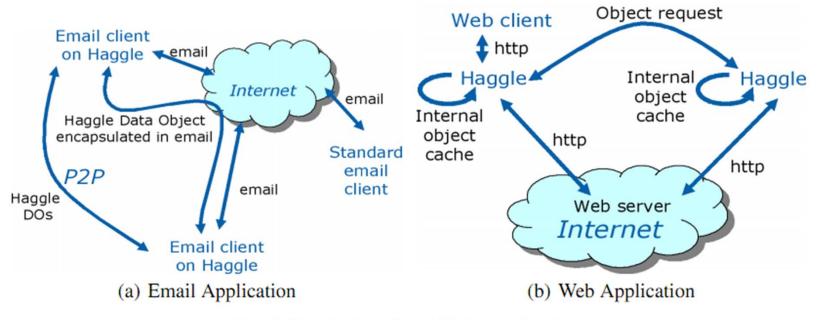


Fig. 3: Haggle Email and Web Applications

Haggle: Existing Applications

Other features that would be nice?

 Data or relationships we can store for browsers or e-mail clients?

 More existing applications that would be improved by Haggle?

Haggle: Experiments

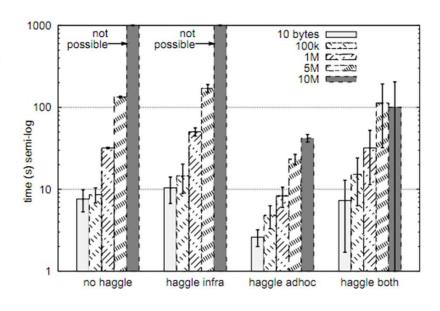
- Deployed using Java J2ME CDC
 - Useable on laptops and mobile platforms
- Experiments were conducted with two Windows XP machines.

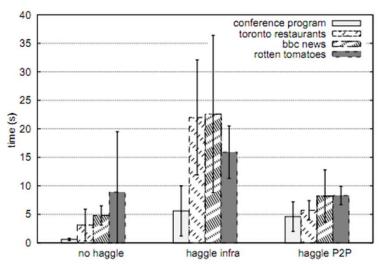
Haggle: Experiments

E-mail

- Used Gmail
 - Has a 10 MB cap for outgoing messages
- Sent messages from one laptop to other
 - 0 bytes < sent messages < 10MB</p>
 - Faster performance with Haggle when allowed to ad hoc transmit messages

Haggle: Experiments Browser


- Used Firefox with FasterFox plug-in
- Measured with four different web sites
 - Different characteristics, like text heavy, image heavy, update heavy, etc.
 - Tried 7 times, cleared cache before each
- Did not give better performance
 - Possibly due to parsing overhead, HTML parsing time, inefficiencies in the data manager



Haggle: Experiments

Results

Haggle: Experiments

Thoughts

 What do you think about their experiments? And the results?

What other testing would be useful?

Haggle: Discussion

Authors' future work

- Future ideas:
 - Resource-friendly media sharing
 - Sync with home, share with friends
 - Predictive/preemptive browser fetching
- Preferences, preferences, preferences!

Haggle: Discussion

What we think

- Is Haggle a good idea? Are there additional good uses for it?
- How successful were the authors?
- How feasible is "good enough" security?
- Ideas for apps in a related field?

