ParkNet

Drive-by Sensing of Road-Side Parking Statistics

Paul Ksiazek

What is ParkNet?

 ParkNet is a mobile system comprising vehicles that collect parking space occupancy information while driving by.

Motivation

- Challenging to obtain real-time streetparking availability statistics.
- Traffic congestion is costly.
 - costs billions of dollars in the United States alone
- Congestion and delays are largely due to parking.
- No data available for roadside parking.

Usages

- Improve traveler decisions

 suggest parking spaces.
- Dynamic parking space pricing – price changes based on slots available.
- Assist parking enforcement

Setup

Each car gathering data has the following:

- Ultrasonic Sensor
 - distance to car
 - availability increasing
 - potential for reuse
- PS3 webcam
 - evaluation, analysis and training
- GPS
 - coordinates of car
- Computer, power adapter, and wiring
 - compute and transmit data

Setup

- The system is installed into vehicles which regularly move about the city.
 - taxi cabs (used in this paper)
 - public buses
 - police cars
- Easier to install and users don't have to worry about setting it up themselves.

Slotted vs. Unslotted

- Slotted
 - fixed size
 - one car per slot

- Unslotted
 - depends on vehicle length
 - fire hydrants, no parking

Goals

- Determine parking availability on an hourly basis.
- Helpful to parking enforcement.
- Low-cost.
- Low vehicle participation.

8

Slotted Algorithm

Width: distance from the start to the end of a dip. Depth: how far from the baseline a dip extends.

- Remove dips with too few readings.
 - can be caused by going too fast
- Training
 - get ideal threshold values
 - 19 separate test trips
 - optimal error rate of 12.4%
- Depth threshold
- Width threshold
 - width greater than 2 thresholds counts as 2 cars.
- Vacant Spaces = total slots counted cars

Unslotted Algorithm

- Measure space between parked cars.
- See how many cars can fit in that space.
 - -6 meters per car
- Available spots = distance / fixed size (6 meters)

Evaluation

- Used webcam pictures to evaluate accuracy.
 - False positives: trees, pedestrians, bikes.
 - Misdetection: car is there but not detected.
- 95% accuracy for parking space counts.
- 90% accuracy for occupancy maps. ¹¹

GPS Inaccuracy

- Accuracy for occupancy map must be higher than space count.
- GPS inaccuracy can cause spots to be mismatched.
- Used environmental fingerprinting to increase accuracy.
 - fixed objects are location-tagged using the video stills.
 - street needs to be traced multiple times so fingerprinting takes more effort.
- Position corrected using the Hungarian algorithm.
 - graph optimization algorithm.

12

GPS Inaccuracy

Mobility and Scalability

- Tracked mobility patterns of 536 taxis in San Francisco over a month.
- Greater San Francisco area
 - mean time between visits in hundreds of minutes.
- Downtown
 - mean time less than 10 minutes.
- Most parking is in areas with many taxis.

ParkNet vs Fixed Parking

Fixed Parking: monitor each slotted parking space individually.

- SFPark
 - 6000 parking spaces
 - currently being employed in San Francisco

15

Cost

- ~\$400 for each sensing vehicle.
 - \$250-\$800 for the smart parking system
- ~\$120,000 for a given area in San Francisco.
 - \$1.5 million for the smart parking system.
- One vehicle can cover multiple parking spots.
 - Need a sensor for each fixed parking spot.

16

Maintenance

- ParkNet is easy to maintain,
 - can be maintained when taxis go in for maintenance.
 - cities offer many free WiFi spots.
- Each fixed parking spot must be maintained separately.

Disadvantages

- Parking spot is not guaranteed to be up to date.
 - fixed parking sensors are always up to date.
- Greater coverage, but random.

18

Unresolved Issues

Multilane Roads

- only tested on single lane roads.
- car driving next to sensing vehicle.
- Speed Limitations
 - high speed leads to misdetections.
 - parking areas usually have lower speed limits.
- Obtaining maps
 - time-dependent spots
 - manual construction from satellite pictures
 - possible to automatically generate

Related Works

- Parking garages with counters. – not displayed on the internet.
- Airports and train stations
- Buying and selling parking spaces.
- Reserved parking spaces.
- Pothole detection.

Results and Contributions

- Their prototype was a success in obtaining real-time street-parking statistics.
 - Accurate
 - Low Cost
 - Scalable
 - Useful
- Useful even with a slight error rate.
 - don't need to know exact number of available slots.

21

Future Work

- Use the webcam as part of the system.
 - computer vision algorithms can help detect cars.
 - solution to lane detection?
 - give users images of the parking spaces.
 - Prediction base on statistics.
 - data gathered over time can be used to predict parking space availability in the future.
 - useful for long-term planning.

22