Bridging the Gap Between Physical Location and Online Social Networks

Cranshaw et al.

Michael Molignano mikem@wpi.edu CS 525w – 3/1/2011

Overview

- Examines location of 489 users
- Introduces location-based features for analyzing geographic areas
- Provide model for predicting friends
- Relation between entropy of visited locations and number of friends
- Discuss potential benefits offline mobility has for online networks

Motivation (p1)

- Heard distinction of *online* and *offline* social networks
- "online social networks are contributing to the isolation of people in the physical world" – Deresieicz
- "online social networks have a positive impact on social relations in the physical world"
 - Pew Internet and American Life

Motivation (p2)

- Location-enabled smartphones everywhere
 - Foursquare, Gowalla, etc.
- Location makes physical behaviors easier to analyze
- Challenge inferring social behavior from locations
 - Especially location tracking alone

Their Contributions

• Evaluate on two main tasks

- Predicting whether two co-located users are friends on Facebook
- Predicting number of friends a user has
- Contributions:
 - 1. Establish model of friendship by co-location
 - 2. Find relationship between mobility pattern and number of friends
 - 3. Show diversity of location can be used to analyze the context of social interactions

Related Work

- Mobility patterns to find statistical models
- Examined features of mobility
 - Proximity at work, Saturday night, etc.
 - Tracked phone conversations
 - Number of unique locations
 - Self report of important factors
- Most work relied solely on co-location without digging further

METHODS

7

Locaccino (p1)

- Web-application for Facebook – Developed by Mobile Commerce Lab at CMU
- Allows users to share location
 - Facebook controlled privacy rules
- Web Application Query friends' locations
- Locator Software Updates user location
 Runs on laptops and mobile phones

Locaccino (p2)

- Runs in background of device
- Updates every 10 minutes
- Uses combination of:
 - GPS (~10m-15m)
 - WiFi (~10m-20m)
 - IP (city or neighborhood)
- Sends time, latitude and longitude

Demographics

- 489 users from 7 days to several months
- Mostly from university campus

Worcester Polytechnic Institute

Data Collection

- 3 million location observations
 - 2 million in Pittsburgh
 - 20 years of human observational data
 - Divide lat. and Ion. into 30m x 30m grid
- Use 10 min. interval for time coordinate
- Co-location = same grid + same time

11

The Networks...

- Social Network (S) Friends in Facebook
- Co-location Network (C) Co-located at least once
- Co-located Friends Network (S ∩ C) Friends and co-located

Graph Structural Properties	${\mathcal S}$	\mathcal{C}	$\mathcal{S} \cap \mathcal{C}$
Number of vertices	397	397	397
Number of isolated vertices	15	120	206
Number of edges	1063	3636	307
Num connected components	106	108	234
Largest component size	315	275	67
Density	0.014	0.046	0.004
Connectedness	0.63	0.48	0.04
Degree centralization	0.06	0.22	0.03
Eigenvector centralization	0.42	0.21	0.50

12

Location Diversity

- Frequency Raw count of observations
- User Count Total unique visitors
- Entropy Number of users and proportions of their observations

13

Measured Features

- Intensity and Duration Intensity of and range of user's use of system
- Location Diversity Frequency, user count and entropy
- Mobility Regularity Size and entropy of user schedule
- **Specificity** How specific a location is to given co-location
- **Structural Properties** Measures the strength of a relationship

14

15

Classifiers

- 50-fold cross validation
- SVM performed the worst
- AdaBoost the best
 - However is skewed to guess better on nonfriendships

Classifier	Prec.	Recall
RandomForests (10 vars. per node)	0.62	0.22
RandomForests (18 vars. per node)	0.61	0.22
AdaBoost (dec. stumps, exp. loss)	0.68	0.24
AdaBoost (dec. stumps, lgstc. loss)	0.60	0.28
SVM (deg 2 polynomial kernel)	0.40	0.31
SVM (deg 3 polynomial kernel)	0.26	0.37

16

Inferring Number of Friends

- Look to relate number of Facebook friends to mobility patterns
- Expectations:
 - Users who have used the system longer have more friends
 - Users who visit "high diversity" locations have more friends
 - Users with irregular schedules may have more friends (require help from Locaccino)

Pearson Correlation of Features

- Intensity and duration weakest
- MaxEntropy, MaxUserCount, MaxFreq best
 - Average performs decently

18

Number of Friends (Cont.)

- Location and diversity numbers based on global properties of location
 - Not each users' individual instance at location
- Location information highly important to number of friends
- Schedule irregularity shows more ties in social network
- Number of friends not tied to heavy system use

19

CONCLUSIONS

Worcester Polytechnic Institute

Conclusions (p1)

- Found the co-location network 3x larger than social network (edge-wise)
 - Social network better connected
- Properties of location are crucial
 - Especially Entropy
 - Difference between high and low entropy
 - Help define both relationships and number of friends

21

Conclusions (p2)

 Created set of features to help classify social network friends

Better than by simple co-location observations

- Found interesting patterns
 - Co-location without friends
 - Friends without co-location

22

Future Work (p1)

- Use classifiers for social network friend recommendation system
 - Augment and expand current friend-link system in place
- Could help provide insight into strength of relationship
 - Still requires more research and validation
 - Develop system for segregating and categorizing friends
 - Help with privacy rules

23

Future Work (p2)

• Build off relationship between online and offline social behavior

Using things such as entropy of a location

- Use of location patterns of users
 - Suggest similar locations to friends
 - Suggest similar locations to non-friends with similar behavior

24