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Overview

e Examines location of 489 users

 Introduces location-based features for
analyzing geographic areas

 Provide model for predicting friends

 Relation between entropy of visited
locations and number of friends

* Discuss potential benefits offline mobility
has for online networks
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Motivation (p1)

« Heard distinction of online and offline
social networks

 “online social networks are contributing to
the isolation of people in the physical world”

— Deresieicz

 “online social networks have a positive
impact on social relations in the physical
world”

— Pew Internet and American Life 3
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Motivation (p2)

 Location-enabled smartphones
everywhere
— Foursquare, Gowalla, etc.

 Location makes physical behaviors easier
to analyze

« Challenge inferring social behavior from
locations
— Especially location tracking alone

Worcester Polytechnic Institute W I I




Their Contributions

« Evaluate on two main tasks

— Predicting whether two co-located users are
friends on Facebook

— Predicting number of friends a user has

« Contributions:
— 1. Establish model of friendship by co-location

— 2. Find relationship between mobility pattern and
number of friends

— 3. Show diversity of location can be used to
analyze the context of social interactions
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Related Work

* Mobility patterns to find statistical models

 Examined features of mobility
— Proximity at work, Saturday night, etc.
— Tracked phone conversations
— Number of unique locations
— Self report of important factors

« Most work relied solely on co-location
without digging further
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METHODS
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Locaccino (p1)

 Web-application for Facebook
— Developed by Mobile Commerce Lab at CMU

 Allows users to share location
— Facebook controlled privacy rules

« Web Application — Query friends’ locations

e Locator Software — Updates user location
— Runs on laptops and mobile phones
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Locaccino (p2)

 Runs in background of device
 Updates every 10 minutes

 Uses combination of:
— GPS (~10m-15m)
— WiFi (~10m-20m)
— IP (city or neighborhood)

Sends time, latitude and longitude
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Demographics

* 489 users from 7 days to several months
 Mostly from university campus
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Data Collection

* 3 million location observations
— 2 million in Pittsburgh
— 20 years of human observational data

 Divide lat. and lon. into 30m x 30m grid
e Use 10 min. interval for time coordinate

 Co-location = same grid + same time

Worcester Polytechnic Institute W I I




The Networks...

e Social Network (S) — Friends in Facebook

 Co-location Network (C) — Co-located at
least once

 Co-located Friends Network (S N C) —
Friends and co-located

Graph Structural Properties S C SNc

Number of vertices 397 397 397

Number of 1solated vertices 15 120 206 Social Network 35 conncoled components, 20 ronbvil . @
Number of edges 1063 3636 307

Num connected components 106 108 234 Gorlocation Networl: 122 conneoted components, 2 non-trvia @
LargeSt COInponent Size 3 1 5 275 67 Co-located Friends Network: 234 connected components, 26 non-trivial

Density 0.014 0.046 0.004 eee@
Connectedness 0' 63 0.48 0. 04 Trivial component (isolated vertex) ® Non-trivial component (at least 2 vertices)

Degree centralization 0.06 022 0.03
Eigenvector centralization 042 021 0.50 12

Worcester Polytechnic Institute W I I




Location Diversity

 Frequency — Raw count of observations
 User Count — Total unigue visitors

 Entropy — Number of users and proportions
of thelr observatlons
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Measured Features

* Intensity and Duration — Intensity of and range
of user’s use of system

 Location Diversity — Freguency, user count and

entropy

 Mobility Regularity — Size and entropy of user
schedule

« Specificity — How specific a location is to given
co-location

o Structural Properties — Measures the strength
of a relationship
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RESULTS
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Classifiers

 50-fold cross validation
« SVM performed the worst
AdaBoost the best

— However is skewed to guess better on non-

friendships
Classifier Prec. | Recall
RandomForests (10 vars. per node) 0.62 | 0.22
RandomForests (18 vars. per node) 0.61 | 0.22
AdaBoost (dec. stumps, exp. loss) 0.68 | 0.24
AdaBoost (dec. stumps, lgstc. loss) 0.60 | 0.28
SVM (deg 2 polynomial kernel) 0.40 | 0.31
SVM (deg 3 polynomial kernel) 0.26 | 0.37
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Inferring Number of Friends

 Look to relate number of Facebook friends
to mobility patterns

 Expectations:

— Users who have used the system longer have
more friends

— Users who visit “high diversity” locations have
more friends

— Users with irregular schedules may have more
friends (require help from Locaccino)
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— Average performs decently
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Number of Friends (Cont.)

 Location and diversity numbers based on
global properties of location
— Not each users’ individual instance at location

* Location information highly important to
number of friends

 Schedule irregularity shows more ties in
social network

 Number of friends not tied to heavy
system use
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CONCLUSIONS
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Conclusions (p1)

 Found the co-location network 3x larger
than social network (edge-wise)

— Social network better connected

* Properties of location are crucial
— Especially Entropy
— Difference between high and low entropy

— Help define both relationships and number of
friends
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Conclusions (p2)

* Created set of features to help classify
social network friends

— Better than by simple co-location observations

 Found interesting patterns
— Co-location without friends
— Friends without co-location
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Future Work (p1)

 Use classifiers for social network friend
recommendation system
— Augment and expand current friend-link
system in place
 Could help provide insight into strength of
relationship
— Still requires more research and validation

— Develop system for segregating and
categorizing friends

— Help with privacy rules
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Future Work (p2)

 Build off relationship between online and
offline social behavior

— Using things such as entropy of a location

 Use of location patterns of users
— Suggest similar locations to friends

— Suggest similar locations to non-friends with
similar behavior
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