

Social Sensing for Epidemiological Behavior Change

Presented by: Michal Dobosz

CS525M: Mobile and Ubiquitous Computing Spring 2011

Definition of Epidemiology

- "Epidemiology is the study of patterns of health and illness and associated factors at the population level."
 - Outbreak investigation
 - Biology
 - Biostatistics
 - Social Science disciplines

Introduction

- How is individual behavior affected by illness and stress?
- Measure characteristic behavior change in symptomatic individuals
 - Mobile phone application
 - Co-location
 - Communication
- Predict health status of an individual

Benefits

- Understanding how people behave when they are infected
 - Lack of realistic social interaction data and spatio-temporal data
- Modeling can be made more accurate
 - Results can be used in the SIR model
 - Number and frequency of contacts on Susceptible -> Infected transition
 - Face-to-face interaction in contagion process

The Experiment

- Two months of data from an undergraduate residence hall
 - Individuals surveyed daily for symptoms
 - Behavioral changes when individuals are sick
 - Total communication, communication patterns, network diversity, entropy of movement

Related Work

- Mobile Phones as Social Sensors
 - Eagle and Pentland
 - Reality Mining social network structure, and recognition of patterns in daily user activity
 - Gonzalez et. al
 - Call detail records used to characterize spatio-temporal regularity
- Google Flu Trends

Related Work Cont.

- Sociometric Badge
 - Identify human activity patterns and analyze conversational prosody features
 - Vocal features,
 body motion,
 relative location

Data Source

- Undergraduate Dormitory
 - 80% participated in the study, most of the remaining 20% were spatially isolated
 - Pro-technology orientation
 - Even distribution among academic years
 - 54% males and most were Engineering,
 Mathematics, and Science majors
- Incentives
 - Windows Mobile Phones and \$1 a survey

Data Sets

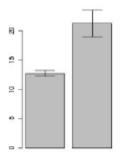
- Social Interaction Data from Mobile Phones
 - Call data records
 - SMS logs
 - Bluetooth proximity and WLAN location sensing (every 6 minutes)
- Symptom Data via Daily Self-Report
 - Physical and Emotional Symptoms
 - 20/69 participants FLU immunized

Survey Questions

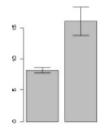
- Do you have a sore throat or cough?
- Do you have a runny nose, congestion or sneezing?
- Do you have a fever?
- Have you had any vomiting, nausea or diarrhea?
- Have you been feeling sad, lonely or depressed
- lately?
- Have you been feeling stressed out lately?

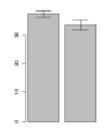
Survey Data

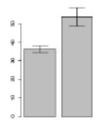
- Immunized Participants not considered
- Survey Data
 - 63% survey completion rate
 - Grouped into 48-hour periods
 - Symptoms labeled as FLU by medically trained epidemiologist
 - 12 cases identified, lasting 5-7 days


Sensor Data

- Total Communication Phone Calls and SMS
- Communication (10PM 9AM on weekdays)
- Communication Diversity
- Physical Bluetooth Proximity day and night (10PM – 9AM on weekdays)
- Physical Bluetooth Proximity excluding students
- University WLANs and non-University WLANs

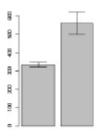



Behavioral Effects of Low Intensity Symptoms (Runny Nose, Sore Throat and Cough)

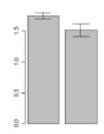

(a) Total communication increases ***

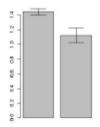
(b) Latenight early morning communication increases **

(c) Overall Bluetooth entropy decreases *

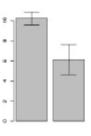


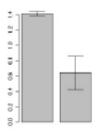
(d) Total WLAN APs detected increase **

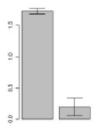


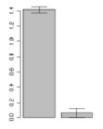

Behavior Effects of Higher-Intensity Symptoms (Fever and Influenza)

(a) Bluetooth entropy with respect to other dorm residents increases ***

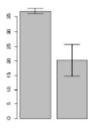

(b) WLAN entropy with respect to university WLAN APs reduces *

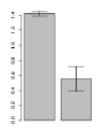

(c) WLAN entropy with respect to external WLAN APs reduces **

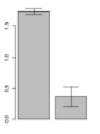

Behavior Effects of Fever

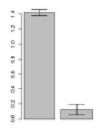

(a) Late night early morning calls and SMS decrease **

(b) Late night morning Bluetooth counts and entropy decrease*


(c) WLAN
based entropy with
respect to
university
WLAN APs
decreases


(d) WLAN
Entropy
with respect
to external
WLAN APs
decreases


Behavior effects of CDC-defined influenza


(a) Total Bluetooth interactions and entropy decrease **

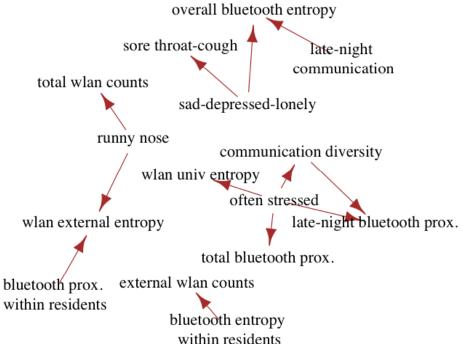
(b) Late night early morning Bluetooth entropy with respect to other participants decreases **

(c) WLAN based entropy with respect to university WLAN APs decreases ***

(d) WLAN
Entropy
with respect
to external
WLAN APs
decreases

Symptom Classification Using Behavioral Features

- Cell phones can predict illness
- K-nearest-neighbor-clustering
 - stress + depression
 - runny nose + sore throat
 - fever + influenza
 - runny nose + sore throat + fever + influenza
- Bayesian-network classifier with MetaCost
 - Accuracy between 60% 80%



Temporal Flux Between Behavior, Stress and Physical Symptoms

 Granger causality test

- Poor noise immunity
- Phase Slope Index (PSI) Method

Conclusions

- Limitations
 - Bluetooth signal strength
 - Statistical tests assume independent samples
- Doctors and nurses can use diagnostic information
 - Early detection of conditions
 - Better healthcare
 - Lower costs

References

- Social Sensing for Epidemiological Behavior Change, Anmol Madan, Manuel Cebrian, David Lazert and Alex Pentland, MIT Media Lab and Harvard University, Cambridge MA
- http://hd.media.mit.edu/badges/
- http://www.google.org/flutrends/
- http://en.wikipedia.org/wiki/Epidemiology

