AutoGait: A Mobile Platform that Accurately Estimates the Distance Walked

-Written By-

Dae-Ki Cho, Min Mun, Uichin Lee, William J. Kaiser, Mario Gerla

-Presented By-

Scott Mitchell

Problem Domain

- Accurately determine distance walked
- Critical for indoor navigation systems, pedometers...
- Dynamic changes in stride length and step frequency

2

Worcester Polytechnic Institute

"Traditional" Estimation

- Indoor
 - RF-based fingerprinting (WiFi/GSM/Bluetooth)
 - Dead Reckoning (accelerometer or pressure sensing pedometer)
- Outdoor
 - GPS tracking
- Distance = # steps * average stride length

3

Alternative Approach

- Traditional methods do not account for changes in stride length of frequency of steps taken
- Traditional approaches may require manual calibration per user
- Linear relationship between stride length and step frequency
 - Applies indoors, outdoors, and regardless of age/gender

4

Location Tracking Technique

- GPS Location Tracking
 - Noisy (error ~ 5m-10m)
- Break path into line segments
 - Change in heading used
 - Compute stride length / step frequency for each segment using walking profile
- Auto calibration for walking profile

Architecture

GPS data filter/calibration

- COTS
- Smoothing
- Pedometer
 - Step history
 - Distance walked

6

Measurement Approach

Stride Length Lookup (SSL)

– S = a freq + B

Segmentation

- Immobility Detection (> sum of mean and three times std deviation)
- Unrealistic Movement Detection (speed between two points > sum of average and two time std deviation)

Smoothing

- Convolution with uniform distribution
- Straight Line Identification
 - Consider near straight-line walking patterns over noisy GPS₇

Questions / Comments

- End of over view
- More details coming up...wake up

8

Straight Line Detection

Heading change vectors:

 $\theta_i = H_{i+1} - H_i \quad 1 \leq i < h-1, -180^\circ \leq \theta < 180^\circ$

Cumulative heading changes:

$$\overrightarrow{c} = [\sum_{t=1}^{1} \theta_t, \sum_{t=1}^{2} \theta_t, ..., \sum_{t=1}^{k} \theta_t]$$

9

Straight Line Detection Cont.

- Obtain maximum i such that e_i < ET and e_i (1<=j<i)
- If GPS coordinates P₁,..P_{i+2} are within boundary, where i is sufficiently large, it is assumed a straight-line segment.
- The process repeats to extract more straight line segments. Heading values are excluded from the

mation (i to h) if needed.

Walking Profile Calibration

- End-to-End: D_{i+1} Distance between two endpoints of the segment
- Sum Up: Σⁱ⁺¹_{j=1}d_j
 cumulative distance
 of two consecutive
 points in the
 segment
- Average Stride
 Length = distance / (#
 edges in segment * #
 steps in an edge)

 Update SLL using linear least squares fitting with existing samples to obtain new alpha and beta coefficients

11

Calibration Termination

- Continuous calibration until least squares method converges
 - After sufficient samples obtained
 - GPS is turned off to conserve energy
 - $\forall i, \left| \arctan\left(\frac{\alpha_i \alpha_{i-1}}{1 + \alpha_i \cdot \alpha_{i-1}}\right) * \frac{180}{\pi} \right| < \gamma^\circ, k \le i < k + m$
- Angle of change between slope of new equation

 (a_i) and previous slope (a_{i-1}) is smaller than
 gamma for m calibration samples

12

AutoGait Prototype

- Nokia N810, Linux, Python
- Custom pedometer using low force sensors
 - SmartShoe platform to avoid low acceleration motion sensing problems
 - Bluetooth connection to N810, sepearte threads for gathering data and counting steps
- GPS reading acquired every 10 steps

Results

Participant	A	B	C
α (SLL)	0.453	0.064	0.539
β (SLL)	0.23	0.612	0.2156
Segments Found	15	18	14
Est Dist (m)	1577.5	1579.4	1616.9
Error Rate	-1.41%	-1.29%	1.06%

Speed		Slow	Moderate	Fast
Distance (m)		400	800	400
Lap Time (min:sec)		9:56	11:52	3:45
# of Steps (Ground truth)		718	1192	488
AutoGait	Est Dist (m)	395.9	795.4	396.3
	Error Rate	1.02%	0.58%	0.93%
Const. Stride	Est Dist (m)	502.6	834.4	341.6
Length $(0.7m)$	Error Rate	-25.7%	-4.3%	14.6%

Fig. 9. Least Square: As number of samples increases, the linear line converges to a line

- Calibrated by walking around campus
- Track testing (sum up wins) with Treadmill verification (endto-end)

14

Questions / Comments

- Change in altitude?
- Running vs Walking?
- Typical battery life?
- Claimed to be useful for indoors, but how do you read GPS indoors?
 - Mentioned compasses, but how reliable are they in your pocket?