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Introduction

e The popularity of mobile devices is increasing.

e Apps are becoming more mainstream.

There are over 350k apps at the iOS AppStore with
over 10 billion downloads.

e Companies are developing apps instead of just web-
based services.

e We don’t know nearly as much about app usage as
web usage.



Related Work

e Existing studies of app usage have been isolated and
small scale.

This project wishes to gather nation-wide data for
location and time based variations.

e Other studies have used an app that relied on
volunteer measurement.

This is too challenging, as many APIs don’t enable
measurement of other apps.



Methodology

e Collect anonymized network traces within a tier-1
cellular network in the U.S. for one week.

e Use HTTP headers and user agents to distinguish
individual apps and locations.

top X apps | right (%) wrong (%) unknown (%)
10 | 8(80%) 0 (0%) 2 (20%)
20 | 17 (85%) 1 (5%) 2 (10%)
50 | 46 (92%) 2 (4%) 2 (4%)
100 | 91 (91%) 4 (4%) 5 (5%)
200 | 176 (88%) 5 (3%) 19 (10%)
500 | 427 (85%) 14 (3%) 69 (14%)

Table 1: accuracy of using User-Agent to categorize apps
(via manual comparison to app names in the app marketplace).



Methodology

e Record four main features for each app:
Traffic volume
Access time
Unique subscribers
Locations

e Use uniform random sampling to prevent traffic
overflow.

e Only recognize apps involving network flows, but the
interest of the study is just such apps anyway.



Results :

e Recorded data for a total of about 600K individual
devices and about 22K individual apps.

e When analyzing traffic volume, access time, and
number of subscribers, many apps have very small
values and do not provide enough data to analyze,
so are excluded from detailed analysis.
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total apps | 351 418 643 1827 283 3108 368 1298 205 1296 450 1126 475 527 515 721 787 590 1079 236 5865
popularapps | 7 8 13 95 13 199 23 71 4 34 23 89 17 23 26 58 33 29 49 16 170

Table 2: distribution of the genre of apps.



Traffic Volume

e Note that app and web browsing traffic are
comparable, and the significant market traffic.
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a. distribution of traffic volume



Access Time

e Gaming, p2p, and voip seem to not be commonly

used on the captured devices.
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Unique Subscribers °

e The misc value reflects the total number of
subscribers. Almost all use web browsing and apps.
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Results for Smartphone Apps Only | :
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Figure 2: (a)-(c) CDF of volume, access time, and users, with one data point per smartphone app, aggregating users together in one
week.



Results Normalized by Subscribers | :

e A few big values, but most are very small. Must filter
out small values for proper analysis.
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Figure 3: metrics of smartphone apps (ii) — averaged based on users.



Filtering Results

e Over 90% of total traffic and access time is contained
within the 1000 most-subscribed apps.
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Figure 4: is the number of unique subscribers a good metric
for filtering? Contributions of the top X apps to total volume
and access time respectively



Results for Location o

e 20% of popular apps are local, such as radio or news.

e Amounts to 2% of total traffic.
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Figure 6: contribution of volume from top X states.
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Figure 8: distribution of the geographic usage of apps in different genres.



000
X X X J
o000
33
Results for Mobility °
e About 10% of apps access the network more than
two sectors.
e Most mobile apps are social networks or games.
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Table 5: genres of high travel-area smartphone apps. ]’igllt‘u} 11: travel-area of apps.



Results for Correlation e

e A JSC of 0.05 for two apps with 2000 subscribers
each means 100 subscribers use both.

e Popular apps share more subscribers, naturally.
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Results for Temporal Patterns °
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Figure 15: diurnal patterns across different genres.
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Figure 14: diurnal patterns.

category | #apps | description

small games, video channels, eic.

28 music radio channels, news radio channels, eic.
12 sleep aid utilities, etc.
i bible, references, eic.

Table 7: description of late night apps.
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Results for Devices e

e More advanced devices consume more traffic.
e Power users likely upgrade to latest devices.
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Figure 16: impact of devices used.



Conclusions

e Findings show many opportunities for optimization
(such as moving content to local servers) and
profiling (for recommending apps).

e Some apps are often used together, and some types
of apps have alternatives that are interchangeable.

e There are trends in time of use (news in morning,
sports in evening).

e There are trends in use while stationary or mobile.

e Results are mostly intuitive...



Thoughts

e Very broad and thorough analysis, but bland results.
e Is one week really long enough?

Weather app usage during hurricane season

e Why not name specific companies?
Tier-1 cellular network
Personalized Internet radio app
Social utility connecting people app (Facebook?)

6 out of 7 devices use it, according to the data

e Graphs should use different colors instead of or in
addition to different patterns.
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